Solar Speckle Image Deblurring with Deep Prior Constraint based on Regularization
The solar speckle image has the characteristics with single features, more noise, and blurred local details. Most of the existing deep learning deblurring methods for solar speckle images have some problems, such as high-frequency loss, artifact generation, and dependence on the paired image. In thi...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022-01, Vol.10, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 10 |
creator | Jin, Yahui Jiang, Murong Yang, Lei Zou, Sizhong Deng, Linhao Chen, Junyi |
description | The solar speckle image has the characteristics with single features, more noise, and blurred local details. Most of the existing deep learning deblurring methods for solar speckle images have some problems, such as high-frequency loss, artifact generation, and dependence on the paired image. In this paper, a deep prior deblurring method fusing the regularization model and prior constraint network is proposed. Firstly, the traditional handcrafted regularization priors are added to the network parameterized blind deconvolution model. The image gradient prior and blur kernel initial parameters are respectively used to the network parameterization process of two variables in the blind deconvolution model, which are the latent clean image variables and blur kernel variables. After that, the solar speckle image deep prior deblurring model is established. Secondly, the blur kernel generation network input is estimated by using the atmospheric point spread function (PSF) to improve the model convergence speed. Thirdly, a latent clean image generation network including joint gradient branching and Feature Pyramid Network (FPN) structure is designed to enhance image local edge details. Finally, a joint loss function including pixel loss, image prior loss, and mean squared error (MSE) loss is introduced to guide the model for alternate training. It can obtain the best parameter values of latent clean image and blur kernel, and achieve the solar speckle image high-resolution reconstruction. The experimental results show that the proposed method can eliminate the dependence on the reference image, and the reconstructed image has less noise and more obvious high-frequency details, faster network convergence, and two evaluation indicators of Peak Signal Noise Ratio (PSNR) and Structural Similarity (SSIM) are significantly improved. |
doi_str_mv | 10.1109/ACCESS.2022.3226812 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3226812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9970309</ieee_id><doaj_id>oai_doaj_org_article_ca4df985f5284329901e83f0ac1e4b71</doaj_id><sourcerecordid>2754152639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-9bc9029b541e9c435c8b4fec98ec7c0e3d6a6848b8962912e9b6eae1d95dd19b3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOALuFji3OJHnHiPKLwqVeJROFu2sykuIS5OKgRfj0sqxF52d7QzO9Jk2RmjU8YoXFxW1fViMeWU86ngvFCM72VHnBUwEVIU-__mw-y071c0lUqQLI-yx0VoTSSLNbq3Fsns3SyRXKFtNzH6bkk-_fCadlyTh-hDJFXo-iEa3w3Emh5rEjryhMtNEvHfZvChO8kOGtP2eLrrx9nLzfVzdTeZ39_Oqsv5xAmphglYB5SDlTlDcLmQTtm8QQcKXekoirowhcqVVVBwYBzBFmiQ1SDrmoEVx9ls1K2DWel19O8mfulgvP4FQlxqEwfvWtTO5HUDSjaSq1xwAMpQiYYaxzC3JUta56PWOoaPDfaDXoVN7JJ9zcvkUPJCQLoS45WLoe8jNn9fGdXbKPQYhd5GoXdRJNbZyPKI-McAKKmgIH4AAuCEYw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754152639</pqid></control><display><type>article</type><title>Solar Speckle Image Deblurring with Deep Prior Constraint based on Regularization</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jin, Yahui ; Jiang, Murong ; Yang, Lei ; Zou, Sizhong ; Deng, Linhao ; Chen, Junyi</creator><creatorcontrib>Jin, Yahui ; Jiang, Murong ; Yang, Lei ; Zou, Sizhong ; Deng, Linhao ; Chen, Junyi</creatorcontrib><description>The solar speckle image has the characteristics with single features, more noise, and blurred local details. Most of the existing deep learning deblurring methods for solar speckle images have some problems, such as high-frequency loss, artifact generation, and dependence on the paired image. In this paper, a deep prior deblurring method fusing the regularization model and prior constraint network is proposed. Firstly, the traditional handcrafted regularization priors are added to the network parameterized blind deconvolution model. The image gradient prior and blur kernel initial parameters are respectively used to the network parameterization process of two variables in the blind deconvolution model, which are the latent clean image variables and blur kernel variables. After that, the solar speckle image deep prior deblurring model is established. Secondly, the blur kernel generation network input is estimated by using the atmospheric point spread function (PSF) to improve the model convergence speed. Thirdly, a latent clean image generation network including joint gradient branching and Feature Pyramid Network (FPN) structure is designed to enhance image local edge details. Finally, a joint loss function including pixel loss, image prior loss, and mean squared error (MSE) loss is introduced to guide the model for alternate training. It can obtain the best parameter values of latent clean image and blur kernel, and achieve the solar speckle image high-resolution reconstruction. The experimental results show that the proposed method can eliminate the dependence on the reference image, and the reconstructed image has less noise and more obvious high-frequency details, faster network convergence, and two evaluation indicators of Peak Signal Noise Ratio (PSNR) and Structural Similarity (SSIM) are significantly improved.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3226812</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Atmospheric modeling ; Constraint modelling ; Convergence ; Deconvolution ; deep image prior ; Image edge detection ; Image enhancement ; Image processing ; Image reconstruction ; Image resolution ; Image synthesis ; Kernels ; Parameterization ; Parameters ; point spread function ; Point spread functions ; PSNR ; Regularization ; regularization model ; Signal to noise ratio ; Solar energy ; Solar speckle image ; Speckle</subject><ispartof>IEEE access, 2022-01, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-9bc9029b541e9c435c8b4fec98ec7c0e3d6a6848b8962912e9b6eae1d95dd19b3</cites><orcidid>0000-0001-9917-2926 ; 0000-0001-7607-2594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9970309$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jin, Yahui</creatorcontrib><creatorcontrib>Jiang, Murong</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Zou, Sizhong</creatorcontrib><creatorcontrib>Deng, Linhao</creatorcontrib><creatorcontrib>Chen, Junyi</creatorcontrib><title>Solar Speckle Image Deblurring with Deep Prior Constraint based on Regularization</title><title>IEEE access</title><addtitle>Access</addtitle><description>The solar speckle image has the characteristics with single features, more noise, and blurred local details. Most of the existing deep learning deblurring methods for solar speckle images have some problems, such as high-frequency loss, artifact generation, and dependence on the paired image. In this paper, a deep prior deblurring method fusing the regularization model and prior constraint network is proposed. Firstly, the traditional handcrafted regularization priors are added to the network parameterized blind deconvolution model. The image gradient prior and blur kernel initial parameters are respectively used to the network parameterization process of two variables in the blind deconvolution model, which are the latent clean image variables and blur kernel variables. After that, the solar speckle image deep prior deblurring model is established. Secondly, the blur kernel generation network input is estimated by using the atmospheric point spread function (PSF) to improve the model convergence speed. Thirdly, a latent clean image generation network including joint gradient branching and Feature Pyramid Network (FPN) structure is designed to enhance image local edge details. Finally, a joint loss function including pixel loss, image prior loss, and mean squared error (MSE) loss is introduced to guide the model for alternate training. It can obtain the best parameter values of latent clean image and blur kernel, and achieve the solar speckle image high-resolution reconstruction. The experimental results show that the proposed method can eliminate the dependence on the reference image, and the reconstructed image has less noise and more obvious high-frequency details, faster network convergence, and two evaluation indicators of Peak Signal Noise Ratio (PSNR) and Structural Similarity (SSIM) are significantly improved.</description><subject>Atmospheric modeling</subject><subject>Constraint modelling</subject><subject>Convergence</subject><subject>Deconvolution</subject><subject>deep image prior</subject><subject>Image edge detection</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Image synthesis</subject><subject>Kernels</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>point spread function</subject><subject>Point spread functions</subject><subject>PSNR</subject><subject>Regularization</subject><subject>regularization model</subject><subject>Signal to noise ratio</subject><subject>Solar energy</subject><subject>Solar speckle image</subject><subject>Speckle</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOALuFji3OJHnHiPKLwqVeJROFu2sykuIS5OKgRfj0sqxF52d7QzO9Jk2RmjU8YoXFxW1fViMeWU86ngvFCM72VHnBUwEVIU-__mw-y071c0lUqQLI-yx0VoTSSLNbq3Fsns3SyRXKFtNzH6bkk-_fCadlyTh-hDJFXo-iEa3w3Emh5rEjryhMtNEvHfZvChO8kOGtP2eLrrx9nLzfVzdTeZ39_Oqsv5xAmphglYB5SDlTlDcLmQTtm8QQcKXekoirowhcqVVVBwYBzBFmiQ1SDrmoEVx9ls1K2DWel19O8mfulgvP4FQlxqEwfvWtTO5HUDSjaSq1xwAMpQiYYaxzC3JUta56PWOoaPDfaDXoVN7JJ9zcvkUPJCQLoS45WLoe8jNn9fGdXbKPQYhd5GoXdRJNbZyPKI-McAKKmgIH4AAuCEYw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Jin, Yahui</creator><creator>Jiang, Murong</creator><creator>Yang, Lei</creator><creator>Zou, Sizhong</creator><creator>Deng, Linhao</creator><creator>Chen, Junyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9917-2926</orcidid><orcidid>https://orcid.org/0000-0001-7607-2594</orcidid></search><sort><creationdate>20220101</creationdate><title>Solar Speckle Image Deblurring with Deep Prior Constraint based on Regularization</title><author>Jin, Yahui ; Jiang, Murong ; Yang, Lei ; Zou, Sizhong ; Deng, Linhao ; Chen, Junyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-9bc9029b541e9c435c8b4fec98ec7c0e3d6a6848b8962912e9b6eae1d95dd19b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atmospheric modeling</topic><topic>Constraint modelling</topic><topic>Convergence</topic><topic>Deconvolution</topic><topic>deep image prior</topic><topic>Image edge detection</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Image synthesis</topic><topic>Kernels</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>point spread function</topic><topic>Point spread functions</topic><topic>PSNR</topic><topic>Regularization</topic><topic>regularization model</topic><topic>Signal to noise ratio</topic><topic>Solar energy</topic><topic>Solar speckle image</topic><topic>Speckle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yahui</creatorcontrib><creatorcontrib>Jiang, Murong</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Zou, Sizhong</creatorcontrib><creatorcontrib>Deng, Linhao</creatorcontrib><creatorcontrib>Chen, Junyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yahui</au><au>Jiang, Murong</au><au>Yang, Lei</au><au>Zou, Sizhong</au><au>Deng, Linhao</au><au>Chen, Junyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar Speckle Image Deblurring with Deep Prior Constraint based on Regularization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The solar speckle image has the characteristics with single features, more noise, and blurred local details. Most of the existing deep learning deblurring methods for solar speckle images have some problems, such as high-frequency loss, artifact generation, and dependence on the paired image. In this paper, a deep prior deblurring method fusing the regularization model and prior constraint network is proposed. Firstly, the traditional handcrafted regularization priors are added to the network parameterized blind deconvolution model. The image gradient prior and blur kernel initial parameters are respectively used to the network parameterization process of two variables in the blind deconvolution model, which are the latent clean image variables and blur kernel variables. After that, the solar speckle image deep prior deblurring model is established. Secondly, the blur kernel generation network input is estimated by using the atmospheric point spread function (PSF) to improve the model convergence speed. Thirdly, a latent clean image generation network including joint gradient branching and Feature Pyramid Network (FPN) structure is designed to enhance image local edge details. Finally, a joint loss function including pixel loss, image prior loss, and mean squared error (MSE) loss is introduced to guide the model for alternate training. It can obtain the best parameter values of latent clean image and blur kernel, and achieve the solar speckle image high-resolution reconstruction. The experimental results show that the proposed method can eliminate the dependence on the reference image, and the reconstructed image has less noise and more obvious high-frequency details, faster network convergence, and two evaluation indicators of Peak Signal Noise Ratio (PSNR) and Structural Similarity (SSIM) are significantly improved.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3226812</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9917-2926</orcidid><orcidid>https://orcid.org/0000-0001-7607-2594</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022-01, Vol.10, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3226812 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Atmospheric modeling Constraint modelling Convergence Deconvolution deep image prior Image edge detection Image enhancement Image processing Image reconstruction Image resolution Image synthesis Kernels Parameterization Parameters point spread function Point spread functions PSNR Regularization regularization model Signal to noise ratio Solar energy Solar speckle image Speckle |
title | Solar Speckle Image Deblurring with Deep Prior Constraint based on Regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20Speckle%20Image%20Deblurring%20with%20Deep%20Prior%20Constraint%20based%20on%20Regularization&rft.jtitle=IEEE%20access&rft.au=Jin,%20Yahui&rft.date=2022-01-01&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3226812&rft_dat=%3Cproquest_cross%3E2754152639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754152639&rft_id=info:pmid/&rft_ieee_id=9970309&rft_doaj_id=oai_doaj_org_article_ca4df985f5284329901e83f0ac1e4b71&rfr_iscdi=true |