Analyzing the Impact of Components of Yelp.com on Recommender System Performance: Case of Austin
As people's demand for eating out is steadily increasing, the number of restaurants is continuously increasing, and catering industry platforms such as Yelp, Open Table, and Zomato provide basic information and evaluation information of restaurants and restaurant recommendation services suitabl...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 10 |
creator | Lee, Seungwoo Shin, Hyunjoo Choi, Ilyoung Kim, Jaekyeong |
description | As people's demand for eating out is steadily increasing, the number of restaurants is continuously increasing, and catering industry platforms such as Yelp, Open Table, and Zomato provide basic information and evaluation information of restaurants and restaurant recommendation services suitable for users. Existing research on recommending restaurants mainly uses only evaluation information to find neighbors, and the use of user and restaurant information is still in its infancy. In addition, there is little study on how various types of input information affect the performance of the recommender system. This study examines the influence of three component information provided by Yelp.com on the performance of the recommender system using various real restaurants, reviews, and users dataset provided by Yelp.com. For this purpose, Two Phase Experiment was designed, and restaurant data located in Austin, Texas, USA, which has the largest number of review data, was collected. As a result of the experiment, elite status, the cumulative number of reviews, price range and average rating of restaurants could improve the recommendation performance. |
doi_str_mv | 10.1109/ACCESS.2022.3225190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3225190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9964345</ieee_id><doaj_id>oai_doaj_org_article_9e7d32377e7440cbafd48f64556d67db</doaj_id><sourcerecordid>2754152557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-718d17ffd953423cf75aff9da3f05fcc16ba5ddaaf06cd2b1969f08b7e555ae03</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWBhiS_IBdBz7vV10hWb4tJ24VAQzY99KTK0ij1srZcyXvY_Pp66xA6l5l5vPcG5lXVLaNrxqj5tGmau91uzSnna8E5MEPfVZecKbMSINT7_-YP1U0pezpXPUOgL6tfm8EdTi_d8Eym30i2_ej8RFIkTerHNOAwlfP2Ew_j2qeepIE84jz0OATMZHcqE_bkAXNMuXeDx8-kcQXPms2xTN1wXV1Edyh489qvqh9f7p6ab6v771-3zeZ-5SWtp5VmdWA6xmBASC581OBiNMGJSCF6z1TrIATnIlU-8JYZZSKtW40A4JCKq2q7-Ibk9nbMXe_yySbX2X9Ays_W5anzB7QGdRBcaI1aSupbF4Oso5IAKigd2tnr4-I15vTniGWy-3TM86OK5RokAw6gZ5ZYWD6nUjLGt6uM2nMydknGnpOxr8nMqttF1SHim8IYJYUE8RdXs4pD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754152557</pqid></control><display><type>article</type><title>Analyzing the Impact of Components of Yelp.com on Recommender System Performance: Case of Austin</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lee, Seungwoo ; Shin, Hyunjoo ; Choi, Ilyoung ; Kim, Jaekyeong</creator><creatorcontrib>Lee, Seungwoo ; Shin, Hyunjoo ; Choi, Ilyoung ; Kim, Jaekyeong</creatorcontrib><description>As people's demand for eating out is steadily increasing, the number of restaurants is continuously increasing, and catering industry platforms such as Yelp, Open Table, and Zomato provide basic information and evaluation information of restaurants and restaurant recommendation services suitable for users. Existing research on recommending restaurants mainly uses only evaluation information to find neighbors, and the use of user and restaurant information is still in its infancy. In addition, there is little study on how various types of input information affect the performance of the recommender system. This study examines the influence of three component information provided by Yelp.com on the performance of the recommender system using various real restaurants, reviews, and users dataset provided by Yelp.com. For this purpose, Two Phase Experiment was designed, and restaurant data located in Austin, Texas, USA, which has the largest number of review data, was collected. As a result of the experiment, elite status, the cumulative number of reviews, price range and average rating of restaurants could improve the recommendation performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3225190</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Catering ; Experimental Design ; Impact analysis ; Recommender systems ; Restaurant Recommender Systems ; Restaurants ; Review Data ; Yelp</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-718d17ffd953423cf75aff9da3f05fcc16ba5ddaaf06cd2b1969f08b7e555ae03</citedby><cites>FETCH-LOGICAL-c408t-718d17ffd953423cf75aff9da3f05fcc16ba5ddaaf06cd2b1969f08b7e555ae03</cites><orcidid>0000-0002-6404-4411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9964345$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lee, Seungwoo</creatorcontrib><creatorcontrib>Shin, Hyunjoo</creatorcontrib><creatorcontrib>Choi, Ilyoung</creatorcontrib><creatorcontrib>Kim, Jaekyeong</creatorcontrib><title>Analyzing the Impact of Components of Yelp.com on Recommender System Performance: Case of Austin</title><title>IEEE access</title><addtitle>Access</addtitle><description>As people's demand for eating out is steadily increasing, the number of restaurants is continuously increasing, and catering industry platforms such as Yelp, Open Table, and Zomato provide basic information and evaluation information of restaurants and restaurant recommendation services suitable for users. Existing research on recommending restaurants mainly uses only evaluation information to find neighbors, and the use of user and restaurant information is still in its infancy. In addition, there is little study on how various types of input information affect the performance of the recommender system. This study examines the influence of three component information provided by Yelp.com on the performance of the recommender system using various real restaurants, reviews, and users dataset provided by Yelp.com. For this purpose, Two Phase Experiment was designed, and restaurant data located in Austin, Texas, USA, which has the largest number of review data, was collected. As a result of the experiment, elite status, the cumulative number of reviews, price range and average rating of restaurants could improve the recommendation performance.</description><subject>Catering</subject><subject>Experimental Design</subject><subject>Impact analysis</subject><subject>Recommender systems</subject><subject>Restaurant Recommender Systems</subject><subject>Restaurants</subject><subject>Review Data</subject><subject>Yelp</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWBhiS_IBdBz7vV10hWb4tJ24VAQzY99KTK0ij1srZcyXvY_Pp66xA6l5l5vPcG5lXVLaNrxqj5tGmau91uzSnna8E5MEPfVZecKbMSINT7_-YP1U0pezpXPUOgL6tfm8EdTi_d8Eym30i2_ej8RFIkTerHNOAwlfP2Ew_j2qeepIE84jz0OATMZHcqE_bkAXNMuXeDx8-kcQXPms2xTN1wXV1Edyh489qvqh9f7p6ab6v771-3zeZ-5SWtp5VmdWA6xmBASC581OBiNMGJSCF6z1TrIATnIlU-8JYZZSKtW40A4JCKq2q7-Ibk9nbMXe_yySbX2X9Ays_W5anzB7QGdRBcaI1aSupbF4Oso5IAKigd2tnr4-I15vTniGWy-3TM86OK5RokAw6gZ5ZYWD6nUjLGt6uM2nMydknGnpOxr8nMqttF1SHim8IYJYUE8RdXs4pD</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lee, Seungwoo</creator><creator>Shin, Hyunjoo</creator><creator>Choi, Ilyoung</creator><creator>Kim, Jaekyeong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6404-4411</orcidid></search><sort><creationdate>2022</creationdate><title>Analyzing the Impact of Components of Yelp.com on Recommender System Performance: Case of Austin</title><author>Lee, Seungwoo ; Shin, Hyunjoo ; Choi, Ilyoung ; Kim, Jaekyeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-718d17ffd953423cf75aff9da3f05fcc16ba5ddaaf06cd2b1969f08b7e555ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catering</topic><topic>Experimental Design</topic><topic>Impact analysis</topic><topic>Recommender systems</topic><topic>Restaurant Recommender Systems</topic><topic>Restaurants</topic><topic>Review Data</topic><topic>Yelp</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seungwoo</creatorcontrib><creatorcontrib>Shin, Hyunjoo</creatorcontrib><creatorcontrib>Choi, Ilyoung</creatorcontrib><creatorcontrib>Kim, Jaekyeong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seungwoo</au><au>Shin, Hyunjoo</au><au>Choi, Ilyoung</au><au>Kim, Jaekyeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the Impact of Components of Yelp.com on Recommender System Performance: Case of Austin</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As people's demand for eating out is steadily increasing, the number of restaurants is continuously increasing, and catering industry platforms such as Yelp, Open Table, and Zomato provide basic information and evaluation information of restaurants and restaurant recommendation services suitable for users. Existing research on recommending restaurants mainly uses only evaluation information to find neighbors, and the use of user and restaurant information is still in its infancy. In addition, there is little study on how various types of input information affect the performance of the recommender system. This study examines the influence of three component information provided by Yelp.com on the performance of the recommender system using various real restaurants, reviews, and users dataset provided by Yelp.com. For this purpose, Two Phase Experiment was designed, and restaurant data located in Austin, Texas, USA, which has the largest number of review data, was collected. As a result of the experiment, elite status, the cumulative number of reviews, price range and average rating of restaurants could improve the recommendation performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3225190</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6404-4411</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3225190 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Catering Experimental Design Impact analysis Recommender systems Restaurant Recommender Systems Restaurants Review Data Yelp |
title | Analyzing the Impact of Components of Yelp.com on Recommender System Performance: Case of Austin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20Impact%20of%20Components%20of%20Yelp.com%20on%20Recommender%20System%20Performance:%20Case%20of%20Austin&rft.jtitle=IEEE%20access&rft.au=Lee,%20Seungwoo&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3225190&rft_dat=%3Cproquest_cross%3E2754152557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754152557&rft_id=info:pmid/&rft_ieee_id=9964345&rft_doaj_id=oai_doaj_org_article_9e7d32377e7440cbafd48f64556d67db&rfr_iscdi=true |