Indirect Dynamic Negotiation in the Nash Demand Game
The paper addresses a problem of sequential bilateral bargaining with incomplete information. We proposed a decision model that helps agents to successfully bargain by performing indirect negotiation and learning the opponent's model. Methodologically the paper casts heuristically-motivated bar...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.105008-105021 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105021 |
---|---|
container_issue | |
container_start_page | 105008 |
container_title | IEEE access |
container_volume | 10 |
creator | Guy, Tatiana V. Homolova, Jitka Gaj, Aleksej |
description | The paper addresses a problem of sequential bilateral bargaining with incomplete information. We proposed a decision model that helps agents to successfully bargain by performing indirect negotiation and learning the opponent's model. Methodologically the paper casts heuristically-motivated bargaining of a self-interested independent player into a framework of Bayesian learning and Markov decision processes. The special form of the reward implicitly motivates the players to negotiate indirectly, via closed-loop interaction. We illustrate the approach by applying our model to the Nash demand game, which is an abstract model of bargaining. The results indicate that the established negotiation: i) leads to coordinating players' actions; ii) results in maximising success rate of the game and iii) brings more individual profit to the players. |
doi_str_mv | 10.1109/ACCESS.2022.3210506 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3210506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9905577</ieee_id><doaj_id>oai_doaj_org_article_183ca8bc253346c69456d4cfa36e6e50</doaj_id><sourcerecordid>2723902001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3764ff78629019735576504d322597a82c0698d650b103bb06b2823bd12ba8d63</originalsourceid><addsrcrecordid>eNpNUMFuwjAMraZNGmJ8AZdKO8OcuEmbIyqMISF2YDtHaZpCEG1YWg78_cKK0Hyx9fTes_2iaExgSgiIt1meL7bbKQVKp0gJMOAP0YASLibIkD_-m5-jUdseIFQWIJYOomTVlNYb3cXzS6Nqq-ON2bnOqs66JrZN3O1NvFHtPp6bWjVlvFS1eYmeKnVszejWh9H3--Ir_5isP5erfLaeaGRZN8GUJ1WVZpwKICJFxlLOICmRUiZSlVENXGRlwAoCWBTAC5pRLEpCCxVwHEar3rd06iBP3tbKX6RTVv4Bzu-k8p3VRyNJhlplhaYMMeGai4TxMtGVQm64YRC8Xnuvk3c_Z9N28uDOvgnnS5pSFEABSGBhz9Leta031X0rAXlNW_Zpy2va8pZ2UI17lTXG3BVCQPg4xV8Xpnak</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723902001</pqid></control><display><type>article</type><title>Indirect Dynamic Negotiation in the Nash Demand Game</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Guy, Tatiana V. ; Homolova, Jitka ; Gaj, Aleksej</creator><creatorcontrib>Guy, Tatiana V. ; Homolova, Jitka ; Gaj, Aleksej</creatorcontrib><description>The paper addresses a problem of sequential bilateral bargaining with incomplete information. We proposed a decision model that helps agents to successfully bargain by performing indirect negotiation and learning the opponent's model. Methodologically the paper casts heuristically-motivated bargaining of a self-interested independent player into a framework of Bayesian learning and Markov decision processes. The special form of the reward implicitly motivates the players to negotiate indirectly, via closed-loop interaction. We illustrate the approach by applying our model to the Nash demand game, which is an abstract model of bargaining. The results indicate that the established negotiation: i) leads to coordinating players' actions; ii) results in maximising success rate of the game and iii) brings more individual profit to the players.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3210506</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayes methods ; Biological system modeling ; Games ; Learning ; Learning systems ; Machine learning ; Markov decision process ; Markov processes ; Nash demand game ; Nash equilibrium ; negotiation ; Negotiations ; Players ; Resource management ; Uncertainty</subject><ispartof>IEEE access, 2022, Vol.10, p.105008-105021</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-3764ff78629019735576504d322597a82c0698d650b103bb06b2823bd12ba8d63</cites><orcidid>0000-0003-1017-0727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9905577$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Guy, Tatiana V.</creatorcontrib><creatorcontrib>Homolova, Jitka</creatorcontrib><creatorcontrib>Gaj, Aleksej</creatorcontrib><title>Indirect Dynamic Negotiation in the Nash Demand Game</title><title>IEEE access</title><addtitle>Access</addtitle><description>The paper addresses a problem of sequential bilateral bargaining with incomplete information. We proposed a decision model that helps agents to successfully bargain by performing indirect negotiation and learning the opponent's model. Methodologically the paper casts heuristically-motivated bargaining of a self-interested independent player into a framework of Bayesian learning and Markov decision processes. The special form of the reward implicitly motivates the players to negotiate indirectly, via closed-loop interaction. We illustrate the approach by applying our model to the Nash demand game, which is an abstract model of bargaining. The results indicate that the established negotiation: i) leads to coordinating players' actions; ii) results in maximising success rate of the game and iii) brings more individual profit to the players.</description><subject>Bayes methods</subject><subject>Biological system modeling</subject><subject>Games</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Markov decision process</subject><subject>Markov processes</subject><subject>Nash demand game</subject><subject>Nash equilibrium</subject><subject>negotiation</subject><subject>Negotiations</subject><subject>Players</subject><subject>Resource management</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFuwjAMraZNGmJ8AZdKO8OcuEmbIyqMISF2YDtHaZpCEG1YWg78_cKK0Hyx9fTes_2iaExgSgiIt1meL7bbKQVKp0gJMOAP0YASLibIkD_-m5-jUdseIFQWIJYOomTVlNYb3cXzS6Nqq-ON2bnOqs66JrZN3O1NvFHtPp6bWjVlvFS1eYmeKnVszejWh9H3--Ir_5isP5erfLaeaGRZN8GUJ1WVZpwKICJFxlLOICmRUiZSlVENXGRlwAoCWBTAC5pRLEpCCxVwHEar3rd06iBP3tbKX6RTVv4Bzu-k8p3VRyNJhlplhaYMMeGai4TxMtGVQm64YRC8Xnuvk3c_Z9N28uDOvgnnS5pSFEABSGBhz9Leta031X0rAXlNW_Zpy2va8pZ2UI17lTXG3BVCQPg4xV8Xpnak</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Guy, Tatiana V.</creator><creator>Homolova, Jitka</creator><creator>Gaj, Aleksej</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1017-0727</orcidid></search><sort><creationdate>2022</creationdate><title>Indirect Dynamic Negotiation in the Nash Demand Game</title><author>Guy, Tatiana V. ; Homolova, Jitka ; Gaj, Aleksej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3764ff78629019735576504d322597a82c0698d650b103bb06b2823bd12ba8d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayes methods</topic><topic>Biological system modeling</topic><topic>Games</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Markov decision process</topic><topic>Markov processes</topic><topic>Nash demand game</topic><topic>Nash equilibrium</topic><topic>negotiation</topic><topic>Negotiations</topic><topic>Players</topic><topic>Resource management</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guy, Tatiana V.</creatorcontrib><creatorcontrib>Homolova, Jitka</creatorcontrib><creatorcontrib>Gaj, Aleksej</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guy, Tatiana V.</au><au>Homolova, Jitka</au><au>Gaj, Aleksej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indirect Dynamic Negotiation in the Nash Demand Game</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>105008</spage><epage>105021</epage><pages>105008-105021</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The paper addresses a problem of sequential bilateral bargaining with incomplete information. We proposed a decision model that helps agents to successfully bargain by performing indirect negotiation and learning the opponent's model. Methodologically the paper casts heuristically-motivated bargaining of a self-interested independent player into a framework of Bayesian learning and Markov decision processes. The special form of the reward implicitly motivates the players to negotiate indirectly, via closed-loop interaction. We illustrate the approach by applying our model to the Nash demand game, which is an abstract model of bargaining. The results indicate that the established negotiation: i) leads to coordinating players' actions; ii) results in maximising success rate of the game and iii) brings more individual profit to the players.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3210506</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1017-0727</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.105008-105021 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3210506 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Bayes methods Biological system modeling Games Learning Learning systems Machine learning Markov decision process Markov processes Nash demand game Nash equilibrium negotiation Negotiations Players Resource management Uncertainty |
title | Indirect Dynamic Negotiation in the Nash Demand Game |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indirect%20Dynamic%20Negotiation%20in%20the%20Nash%20Demand%20Game&rft.jtitle=IEEE%20access&rft.au=Guy,%20Tatiana%20V.&rft.date=2022&rft.volume=10&rft.spage=105008&rft.epage=105021&rft.pages=105008-105021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3210506&rft_dat=%3Cproquest_cross%3E2723902001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723902001&rft_id=info:pmid/&rft_ieee_id=9905577&rft_doaj_id=oai_doaj_org_article_183ca8bc253346c69456d4cfa36e6e50&rfr_iscdi=true |