Indirect Dynamic Negotiation in the Nash Demand Game

The paper addresses a problem of sequential bilateral bargaining with incomplete information. We proposed a decision model that helps agents to successfully bargain by performing indirect negotiation and learning the opponent's model. Methodologically the paper casts heuristically-motivated bar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.105008-105021
Hauptverfasser: Guy, Tatiana V., Homolova, Jitka, Gaj, Aleksej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105021
container_issue
container_start_page 105008
container_title IEEE access
container_volume 10
creator Guy, Tatiana V.
Homolova, Jitka
Gaj, Aleksej
description The paper addresses a problem of sequential bilateral bargaining with incomplete information. We proposed a decision model that helps agents to successfully bargain by performing indirect negotiation and learning the opponent's model. Methodologically the paper casts heuristically-motivated bargaining of a self-interested independent player into a framework of Bayesian learning and Markov decision processes. The special form of the reward implicitly motivates the players to negotiate indirectly, via closed-loop interaction. We illustrate the approach by applying our model to the Nash demand game, which is an abstract model of bargaining. The results indicate that the established negotiation: i) leads to coordinating players' actions; ii) results in maximising success rate of the game and iii) brings more individual profit to the players.
doi_str_mv 10.1109/ACCESS.2022.3210506
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3210506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9905577</ieee_id><doaj_id>oai_doaj_org_article_183ca8bc253346c69456d4cfa36e6e50</doaj_id><sourcerecordid>2723902001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3764ff78629019735576504d322597a82c0698d650b103bb06b2823bd12ba8d63</originalsourceid><addsrcrecordid>eNpNUMFuwjAMraZNGmJ8AZdKO8OcuEmbIyqMISF2YDtHaZpCEG1YWg78_cKK0Hyx9fTes_2iaExgSgiIt1meL7bbKQVKp0gJMOAP0YASLibIkD_-m5-jUdseIFQWIJYOomTVlNYb3cXzS6Nqq-ON2bnOqs66JrZN3O1NvFHtPp6bWjVlvFS1eYmeKnVszejWh9H3--Ir_5isP5erfLaeaGRZN8GUJ1WVZpwKICJFxlLOICmRUiZSlVENXGRlwAoCWBTAC5pRLEpCCxVwHEar3rd06iBP3tbKX6RTVv4Bzu-k8p3VRyNJhlplhaYMMeGai4TxMtGVQm64YRC8Xnuvk3c_Z9N28uDOvgnnS5pSFEABSGBhz9Leta031X0rAXlNW_Zpy2va8pZ2UI17lTXG3BVCQPg4xV8Xpnak</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723902001</pqid></control><display><type>article</type><title>Indirect Dynamic Negotiation in the Nash Demand Game</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Guy, Tatiana V. ; Homolova, Jitka ; Gaj, Aleksej</creator><creatorcontrib>Guy, Tatiana V. ; Homolova, Jitka ; Gaj, Aleksej</creatorcontrib><description>The paper addresses a problem of sequential bilateral bargaining with incomplete information. We proposed a decision model that helps agents to successfully bargain by performing indirect negotiation and learning the opponent's model. Methodologically the paper casts heuristically-motivated bargaining of a self-interested independent player into a framework of Bayesian learning and Markov decision processes. The special form of the reward implicitly motivates the players to negotiate indirectly, via closed-loop interaction. We illustrate the approach by applying our model to the Nash demand game, which is an abstract model of bargaining. The results indicate that the established negotiation: i) leads to coordinating players' actions; ii) results in maximising success rate of the game and iii) brings more individual profit to the players.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3210506</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayes methods ; Biological system modeling ; Games ; Learning ; Learning systems ; Machine learning ; Markov decision process ; Markov processes ; Nash demand game ; Nash equilibrium ; negotiation ; Negotiations ; Players ; Resource management ; Uncertainty</subject><ispartof>IEEE access, 2022, Vol.10, p.105008-105021</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-3764ff78629019735576504d322597a82c0698d650b103bb06b2823bd12ba8d63</cites><orcidid>0000-0003-1017-0727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9905577$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Guy, Tatiana V.</creatorcontrib><creatorcontrib>Homolova, Jitka</creatorcontrib><creatorcontrib>Gaj, Aleksej</creatorcontrib><title>Indirect Dynamic Negotiation in the Nash Demand Game</title><title>IEEE access</title><addtitle>Access</addtitle><description>The paper addresses a problem of sequential bilateral bargaining with incomplete information. We proposed a decision model that helps agents to successfully bargain by performing indirect negotiation and learning the opponent's model. Methodologically the paper casts heuristically-motivated bargaining of a self-interested independent player into a framework of Bayesian learning and Markov decision processes. The special form of the reward implicitly motivates the players to negotiate indirectly, via closed-loop interaction. We illustrate the approach by applying our model to the Nash demand game, which is an abstract model of bargaining. The results indicate that the established negotiation: i) leads to coordinating players' actions; ii) results in maximising success rate of the game and iii) brings more individual profit to the players.</description><subject>Bayes methods</subject><subject>Biological system modeling</subject><subject>Games</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Markov decision process</subject><subject>Markov processes</subject><subject>Nash demand game</subject><subject>Nash equilibrium</subject><subject>negotiation</subject><subject>Negotiations</subject><subject>Players</subject><subject>Resource management</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFuwjAMraZNGmJ8AZdKO8OcuEmbIyqMISF2YDtHaZpCEG1YWg78_cKK0Hyx9fTes_2iaExgSgiIt1meL7bbKQVKp0gJMOAP0YASLibIkD_-m5-jUdseIFQWIJYOomTVlNYb3cXzS6Nqq-ON2bnOqs66JrZN3O1NvFHtPp6bWjVlvFS1eYmeKnVszejWh9H3--Ir_5isP5erfLaeaGRZN8GUJ1WVZpwKICJFxlLOICmRUiZSlVENXGRlwAoCWBTAC5pRLEpCCxVwHEar3rd06iBP3tbKX6RTVv4Bzu-k8p3VRyNJhlplhaYMMeGai4TxMtGVQm64YRC8Xnuvk3c_Z9N28uDOvgnnS5pSFEABSGBhz9Leta031X0rAXlNW_Zpy2va8pZ2UI17lTXG3BVCQPg4xV8Xpnak</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Guy, Tatiana V.</creator><creator>Homolova, Jitka</creator><creator>Gaj, Aleksej</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1017-0727</orcidid></search><sort><creationdate>2022</creationdate><title>Indirect Dynamic Negotiation in the Nash Demand Game</title><author>Guy, Tatiana V. ; Homolova, Jitka ; Gaj, Aleksej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3764ff78629019735576504d322597a82c0698d650b103bb06b2823bd12ba8d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayes methods</topic><topic>Biological system modeling</topic><topic>Games</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Markov decision process</topic><topic>Markov processes</topic><topic>Nash demand game</topic><topic>Nash equilibrium</topic><topic>negotiation</topic><topic>Negotiations</topic><topic>Players</topic><topic>Resource management</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guy, Tatiana V.</creatorcontrib><creatorcontrib>Homolova, Jitka</creatorcontrib><creatorcontrib>Gaj, Aleksej</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guy, Tatiana V.</au><au>Homolova, Jitka</au><au>Gaj, Aleksej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indirect Dynamic Negotiation in the Nash Demand Game</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>105008</spage><epage>105021</epage><pages>105008-105021</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The paper addresses a problem of sequential bilateral bargaining with incomplete information. We proposed a decision model that helps agents to successfully bargain by performing indirect negotiation and learning the opponent's model. Methodologically the paper casts heuristically-motivated bargaining of a self-interested independent player into a framework of Bayesian learning and Markov decision processes. The special form of the reward implicitly motivates the players to negotiate indirectly, via closed-loop interaction. We illustrate the approach by applying our model to the Nash demand game, which is an abstract model of bargaining. The results indicate that the established negotiation: i) leads to coordinating players' actions; ii) results in maximising success rate of the game and iii) brings more individual profit to the players.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3210506</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1017-0727</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.105008-105021
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3210506
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Bayes methods
Biological system modeling
Games
Learning
Learning systems
Machine learning
Markov decision process
Markov processes
Nash demand game
Nash equilibrium
negotiation
Negotiations
Players
Resource management
Uncertainty
title Indirect Dynamic Negotiation in the Nash Demand Game
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indirect%20Dynamic%20Negotiation%20in%20the%20Nash%20Demand%20Game&rft.jtitle=IEEE%20access&rft.au=Guy,%20Tatiana%20V.&rft.date=2022&rft.volume=10&rft.spage=105008&rft.epage=105021&rft.pages=105008-105021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3210506&rft_dat=%3Cproquest_cross%3E2723902001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723902001&rft_id=info:pmid/&rft_ieee_id=9905577&rft_doaj_id=oai_doaj_org_article_183ca8bc253346c69456d4cfa36e6e50&rfr_iscdi=true