Compensatory Model Predictive Current Control for Modular Multilevel Converter With Reduced Computational Complexity
Model predictive control (MPC) is widely used in modular multilevel converter (MMC) control because of its strong robustness, fast dynamic response, and strong stability. Traditional MPC must traverse several switch combinations to accurately regulate the output current and circulating current of th...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 10 |
creator | Ma, Wenzhong Gong, Dalong Guan, Zengjia Li, Weiguo Meng, Fancheng Liu, Xingyu Wang, Yubin |
description | Model predictive control (MPC) is widely used in modular multilevel converter (MMC) control because of its strong robustness, fast dynamic response, and strong stability. Traditional MPC must traverse several switch combinations to accurately regulate the output current and circulating current of the MMC. Therefore, as the number of sub-module (SM) grows, the controller's computational complexity grows. This paper proposes a compensatory model predictive current control (CMPCC) for inner loop current control. It immediately estimates the number of SMs required by the bridge arm without scrolling optimization, reducing the amount of calculation of the system and improving the output current and circulating current tracking accuracy to the references. The objective function is established based on the system output current and internal circulation current by developing the discretization mathematical model of MMC. On the basis of minimizing the optimization scope, the compensation prediction is achieved through the volt-second balance, to achieve effective current control. Subsequently, an uneven bucket sorting algorithm is proposed to drastically eliminate the unnecessary sorting process. Finally, both a MATLAB/Simulink model and an experimental platform of MMC are built. To verify the practicality of the proposed control strategy, simulation and hardware experiments are provided. |
doi_str_mv | 10.1109/ACCESS.2022.3208971 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3208971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9900330</ieee_id><doaj_id>oai_doaj_org_article_bb0fdfc467a94f339b4ae30338aa12d8</doaj_id><sourcerecordid>2723901270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c2b659caddf440a1ca56b44ded8338ec4e2b02528a8fb4bcc53d20bb55f1cfde3</originalsourceid><addsrcrecordid>eNpNUUtrGzEQFqGFBDe_IJeFnu3qtQ8dw5K2gZSWpqVHMZJGiYxiuVqtif995WwI1WU0M9-D4SPkitENY1R9uh7Hm_v7DaecbwSng-rZGbngrFNr0Yru3X__c3I5TVta31BHbX9Bypie9riboKR8bL4lh7H5kdEFW8IBm3HOGXelGdOu5BQbn_IJNEeodY4lRDxURl0fMBfMzZ9QHpuf6GaLrjlpzwVKSDuIL13E51COH8h7D3HCy9e6Ir8_3_wav67vvn-5Ha_v1lbSoawtN12rLDjnpaTALLSdkdKhG4QY0ErkhvKWDzB4I421rXCcGtO2nlnvUKzI7aLrEmz1PocnyEedIOiXQcoPGnIJNqI2hnrnrex6UNILoYwEFLT6ADBeDVfk46K1z-nvjFPR2zTnetekec-Fooz3tKLEgrI5TVNG_-bKqD6lpZe09Ckt_ZpWZV0trICIbwylaPWn4h8WupPu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723901270</pqid></control><display><type>article</type><title>Compensatory Model Predictive Current Control for Modular Multilevel Converter With Reduced Computational Complexity</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ma, Wenzhong ; Gong, Dalong ; Guan, Zengjia ; Li, Weiguo ; Meng, Fancheng ; Liu, Xingyu ; Wang, Yubin</creator><creatorcontrib>Ma, Wenzhong ; Gong, Dalong ; Guan, Zengjia ; Li, Weiguo ; Meng, Fancheng ; Liu, Xingyu ; Wang, Yubin</creatorcontrib><description>Model predictive control (MPC) is widely used in modular multilevel converter (MMC) control because of its strong robustness, fast dynamic response, and strong stability. Traditional MPC must traverse several switch combinations to accurately regulate the output current and circulating current of the MMC. Therefore, as the number of sub-module (SM) grows, the controller's computational complexity grows. This paper proposes a compensatory model predictive current control (CMPCC) for inner loop current control. It immediately estimates the number of SMs required by the bridge arm without scrolling optimization, reducing the amount of calculation of the system and improving the output current and circulating current tracking accuracy to the references. The objective function is established based on the system output current and internal circulation current by developing the discretization mathematical model of MMC. On the basis of minimizing the optimization scope, the compensation prediction is achieved through the volt-second balance, to achieve effective current control. Subsequently, an uneven bucket sorting algorithm is proposed to drastically eliminate the unnecessary sorting process. Finally, both a MATLAB/Simulink model and an experimental platform of MMC are built. To verify the practicality of the proposed control strategy, simulation and hardware experiments are provided.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3208971</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bridge circuits ; compensation prediction ; Complexity ; Computational complexity ; Current control ; Dynamic response ; Dynamic stability ; Mathematical models ; model predictive current control ; Modular multilevel converter ; Optimization ; optimization scope ; Predictive control ; Predictive models ; Robustness (mathematics) ; Sorting algorithms ; Switches ; uneven bucket sorting</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c2b659caddf440a1ca56b44ded8338ec4e2b02528a8fb4bcc53d20bb55f1cfde3</citedby><cites>FETCH-LOGICAL-c408t-c2b659caddf440a1ca56b44ded8338ec4e2b02528a8fb4bcc53d20bb55f1cfde3</cites><orcidid>0000-0002-6732-2464 ; 0000-0003-1891-9755 ; 0000-0003-3534-5183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9900330$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ma, Wenzhong</creatorcontrib><creatorcontrib>Gong, Dalong</creatorcontrib><creatorcontrib>Guan, Zengjia</creatorcontrib><creatorcontrib>Li, Weiguo</creatorcontrib><creatorcontrib>Meng, Fancheng</creatorcontrib><creatorcontrib>Liu, Xingyu</creatorcontrib><creatorcontrib>Wang, Yubin</creatorcontrib><title>Compensatory Model Predictive Current Control for Modular Multilevel Converter With Reduced Computational Complexity</title><title>IEEE access</title><addtitle>Access</addtitle><description>Model predictive control (MPC) is widely used in modular multilevel converter (MMC) control because of its strong robustness, fast dynamic response, and strong stability. Traditional MPC must traverse several switch combinations to accurately regulate the output current and circulating current of the MMC. Therefore, as the number of sub-module (SM) grows, the controller's computational complexity grows. This paper proposes a compensatory model predictive current control (CMPCC) for inner loop current control. It immediately estimates the number of SMs required by the bridge arm without scrolling optimization, reducing the amount of calculation of the system and improving the output current and circulating current tracking accuracy to the references. The objective function is established based on the system output current and internal circulation current by developing the discretization mathematical model of MMC. On the basis of minimizing the optimization scope, the compensation prediction is achieved through the volt-second balance, to achieve effective current control. Subsequently, an uneven bucket sorting algorithm is proposed to drastically eliminate the unnecessary sorting process. Finally, both a MATLAB/Simulink model and an experimental platform of MMC are built. To verify the practicality of the proposed control strategy, simulation and hardware experiments are provided.</description><subject>Bridge circuits</subject><subject>compensation prediction</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Current control</subject><subject>Dynamic response</subject><subject>Dynamic stability</subject><subject>Mathematical models</subject><subject>model predictive current control</subject><subject>Modular multilevel converter</subject><subject>Optimization</subject><subject>optimization scope</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Robustness (mathematics)</subject><subject>Sorting algorithms</subject><subject>Switches</subject><subject>uneven bucket sorting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtrGzEQFqGFBDe_IJeFnu3qtQ8dw5K2gZSWpqVHMZJGiYxiuVqtif995WwI1WU0M9-D4SPkitENY1R9uh7Hm_v7DaecbwSng-rZGbngrFNr0Yru3X__c3I5TVta31BHbX9Bypie9riboKR8bL4lh7H5kdEFW8IBm3HOGXelGdOu5BQbn_IJNEeodY4lRDxURl0fMBfMzZ9QHpuf6GaLrjlpzwVKSDuIL13E51COH8h7D3HCy9e6Ir8_3_wav67vvn-5Ha_v1lbSoawtN12rLDjnpaTALLSdkdKhG4QY0ErkhvKWDzB4I421rXCcGtO2nlnvUKzI7aLrEmz1PocnyEedIOiXQcoPGnIJNqI2hnrnrex6UNILoYwEFLT6ADBeDVfk46K1z-nvjFPR2zTnetekec-Fooz3tKLEgrI5TVNG_-bKqD6lpZe09Ckt_ZpWZV0trICIbwylaPWn4h8WupPu</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ma, Wenzhong</creator><creator>Gong, Dalong</creator><creator>Guan, Zengjia</creator><creator>Li, Weiguo</creator><creator>Meng, Fancheng</creator><creator>Liu, Xingyu</creator><creator>Wang, Yubin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6732-2464</orcidid><orcidid>https://orcid.org/0000-0003-1891-9755</orcidid><orcidid>https://orcid.org/0000-0003-3534-5183</orcidid></search><sort><creationdate>2022</creationdate><title>Compensatory Model Predictive Current Control for Modular Multilevel Converter With Reduced Computational Complexity</title><author>Ma, Wenzhong ; Gong, Dalong ; Guan, Zengjia ; Li, Weiguo ; Meng, Fancheng ; Liu, Xingyu ; Wang, Yubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c2b659caddf440a1ca56b44ded8338ec4e2b02528a8fb4bcc53d20bb55f1cfde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bridge circuits</topic><topic>compensation prediction</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Current control</topic><topic>Dynamic response</topic><topic>Dynamic stability</topic><topic>Mathematical models</topic><topic>model predictive current control</topic><topic>Modular multilevel converter</topic><topic>Optimization</topic><topic>optimization scope</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Robustness (mathematics)</topic><topic>Sorting algorithms</topic><topic>Switches</topic><topic>uneven bucket sorting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Wenzhong</creatorcontrib><creatorcontrib>Gong, Dalong</creatorcontrib><creatorcontrib>Guan, Zengjia</creatorcontrib><creatorcontrib>Li, Weiguo</creatorcontrib><creatorcontrib>Meng, Fancheng</creatorcontrib><creatorcontrib>Liu, Xingyu</creatorcontrib><creatorcontrib>Wang, Yubin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Wenzhong</au><au>Gong, Dalong</au><au>Guan, Zengjia</au><au>Li, Weiguo</au><au>Meng, Fancheng</au><au>Liu, Xingyu</au><au>Wang, Yubin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensatory Model Predictive Current Control for Modular Multilevel Converter With Reduced Computational Complexity</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Model predictive control (MPC) is widely used in modular multilevel converter (MMC) control because of its strong robustness, fast dynamic response, and strong stability. Traditional MPC must traverse several switch combinations to accurately regulate the output current and circulating current of the MMC. Therefore, as the number of sub-module (SM) grows, the controller's computational complexity grows. This paper proposes a compensatory model predictive current control (CMPCC) for inner loop current control. It immediately estimates the number of SMs required by the bridge arm without scrolling optimization, reducing the amount of calculation of the system and improving the output current and circulating current tracking accuracy to the references. The objective function is established based on the system output current and internal circulation current by developing the discretization mathematical model of MMC. On the basis of minimizing the optimization scope, the compensation prediction is achieved through the volt-second balance, to achieve effective current control. Subsequently, an uneven bucket sorting algorithm is proposed to drastically eliminate the unnecessary sorting process. Finally, both a MATLAB/Simulink model and an experimental platform of MMC are built. To verify the practicality of the proposed control strategy, simulation and hardware experiments are provided.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3208971</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6732-2464</orcidid><orcidid>https://orcid.org/0000-0003-1891-9755</orcidid><orcidid>https://orcid.org/0000-0003-3534-5183</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3208971 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Bridge circuits compensation prediction Complexity Computational complexity Current control Dynamic response Dynamic stability Mathematical models model predictive current control Modular multilevel converter Optimization optimization scope Predictive control Predictive models Robustness (mathematics) Sorting algorithms Switches uneven bucket sorting |
title | Compensatory Model Predictive Current Control for Modular Multilevel Converter With Reduced Computational Complexity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensatory%20Model%20Predictive%20Current%20Control%20for%20Modular%20Multilevel%20Converter%20With%20Reduced%20Computational%20Complexity&rft.jtitle=IEEE%20access&rft.au=Ma,%20Wenzhong&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3208971&rft_dat=%3Cproquest_cross%3E2723901270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723901270&rft_id=info:pmid/&rft_ieee_id=9900330&rft_doaj_id=oai_doaj_org_article_bb0fdfc467a94f339b4ae30338aa12d8&rfr_iscdi=true |