Study on Wear of Electromagnetic Railgun

Sliding friction wear of high-speed current-carrying is a key factor limiting the engineering of electromagnetic railgun, and is also a hot spot and difficult area for current research. In this paper, we simulate the internal ballistic dynamics and electrical contact characteristics based on multi-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.100955-100963
Hauptverfasser: Ren, Shida, Feng, Gang, Liu, Shaowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100963
container_issue
container_start_page 100955
container_title IEEE access
container_volume 10
creator Ren, Shida
Feng, Gang
Liu, Shaowei
description Sliding friction wear of high-speed current-carrying is a key factor limiting the engineering of electromagnetic railgun, and is also a hot spot and difficult area for current research. In this paper, we simulate the internal ballistic dynamics and electrical contact characteristics based on multi-physics field effects and consider the actual working conditions such as Lorentz force, friction force and interference fit to simulate the motion of the armature in the bore. Based on the Archard wear model, a finite element simulation method combining HyperMesh and ANSYS is proposed to realize the wear prediction. The simulation results are compared with the experimental results to verify the accuracy of the prediction model. The results show that under the single firing condition, the wear is mainly concentrated at the end of the armature arm, and the rail wear is relatively light; with the increase of electromagnetic thrust, the increase of armature wear volume does not change much and is approximately equal; the armature wear volume is influenced by the wear coefficient, in which the armature wear volume increases about 190 times when the wear coefficient increases from 1\times 10^{-6} to 1\times 10^{-3} . Therefore, in order to reduce the degree of wear between the armature and rails, the lubrication conditions should be improved as much as possible. This study provides a simulation method for the wear prediction of electromagnetic rail launcher, which is important for the engineering application of electromagnetic rail launcher.
doi_str_mv 10.1109/ACCESS.2022.3208111
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3208111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9895387</ieee_id><doaj_id>oai_doaj_org_article_4ec7587bbe054c7399ef8da0613d8e4c</doaj_id><sourcerecordid>2719554174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-9abbb993a95f384e6a2a90e7255b08395b126229c4b1d3ecdcb6b8655993e6423</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUXETBUvsLegl48ZK6H9mvYwlVCwXBKh6X3c1LSUmzdZMc-u9NTSm-y3sMM_OGQWhO8IIQrJ-Xeb7abhcUU7pgFCtCyA2aUCJ0yjgTt__uezRr2z0eRg0QlxP0tO364pSEJvkGG5NQJqsafBfDwe4a6CqffNiq3vXNA7orbd3C7LKn6Otl9Zm_pZv313W-3KSeMdWl2jrntGZW85KpDISlVmOQlHOHFdPcESoo1T5zpGDgC--EU4LzQQMio2yK1qNvEezeHGN1sPFkgq3MHxDiztg45KrBZOAlV9I5wDzzkmkNpSosFoQVCjI_eD2OXscYfnpoO7MPfWyG-IZKojnPiMwGFhtZPoa2jVBevxJszg2bsWFzbthcGh5U81FVAcBVoZXmTEn2C6cjdJ0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719554174</pqid></control><display><type>article</type><title>Study on Wear of Electromagnetic Railgun</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ren, Shida ; Feng, Gang ; Liu, Shaowei</creator><creatorcontrib>Ren, Shida ; Feng, Gang ; Liu, Shaowei</creatorcontrib><description><![CDATA[Sliding friction wear of high-speed current-carrying is a key factor limiting the engineering of electromagnetic railgun, and is also a hot spot and difficult area for current research. In this paper, we simulate the internal ballistic dynamics and electrical contact characteristics based on multi-physics field effects and consider the actual working conditions such as Lorentz force, friction force and interference fit to simulate the motion of the armature in the bore. Based on the Archard wear model, a finite element simulation method combining HyperMesh and ANSYS is proposed to realize the wear prediction. The simulation results are compared with the experimental results to verify the accuracy of the prediction model. The results show that under the single firing condition, the wear is mainly concentrated at the end of the armature arm, and the rail wear is relatively light; with the increase of electromagnetic thrust, the increase of armature wear volume does not change much and is approximately equal; the armature wear volume is influenced by the wear coefficient, in which the armature wear volume increases about 190 times when the wear coefficient increases from <inline-formula> <tex-math notation="LaTeX">1\times 10^{-6} </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">1\times 10^{-3} </tex-math></inline-formula>. Therefore, in order to reduce the degree of wear between the armature and rails, the lubrication conditions should be improved as much as possible. This study provides a simulation method for the wear prediction of electromagnetic rail launcher, which is important for the engineering application of electromagnetic rail launcher.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3208111</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Archard wear model ; Armature ; CAD ; Computer aided design ; Electric contacts ; Electromagnetic railgun ; Electromagnetics ; Finite element analysis ; Finite element method ; finite element simulation ; Frictional wear ; Interference fit ; Launchers ; Lorentz covariance ; Lorentz force ; Lubrication ; multi-physics field coupling ; Prediction models ; Predictive models ; Railguns ; Simulation ; Sliding friction ; Surface morphology ; Surface treatment ; Volume measurement</subject><ispartof>IEEE access, 2022, Vol.10, p.100955-100963</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-9abbb993a95f384e6a2a90e7255b08395b126229c4b1d3ecdcb6b8655993e6423</citedby><cites>FETCH-LOGICAL-c338t-9abbb993a95f384e6a2a90e7255b08395b126229c4b1d3ecdcb6b8655993e6423</cites><orcidid>0000-0001-8359-8623 ; 0000-0002-8959-0582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9895387$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27635,27925,27926,27927,54935</link.rule.ids></links><search><creatorcontrib>Ren, Shida</creatorcontrib><creatorcontrib>Feng, Gang</creatorcontrib><creatorcontrib>Liu, Shaowei</creatorcontrib><title>Study on Wear of Electromagnetic Railgun</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Sliding friction wear of high-speed current-carrying is a key factor limiting the engineering of electromagnetic railgun, and is also a hot spot and difficult area for current research. In this paper, we simulate the internal ballistic dynamics and electrical contact characteristics based on multi-physics field effects and consider the actual working conditions such as Lorentz force, friction force and interference fit to simulate the motion of the armature in the bore. Based on the Archard wear model, a finite element simulation method combining HyperMesh and ANSYS is proposed to realize the wear prediction. The simulation results are compared with the experimental results to verify the accuracy of the prediction model. The results show that under the single firing condition, the wear is mainly concentrated at the end of the armature arm, and the rail wear is relatively light; with the increase of electromagnetic thrust, the increase of armature wear volume does not change much and is approximately equal; the armature wear volume is influenced by the wear coefficient, in which the armature wear volume increases about 190 times when the wear coefficient increases from <inline-formula> <tex-math notation="LaTeX">1\times 10^{-6} </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">1\times 10^{-3} </tex-math></inline-formula>. Therefore, in order to reduce the degree of wear between the armature and rails, the lubrication conditions should be improved as much as possible. This study provides a simulation method for the wear prediction of electromagnetic rail launcher, which is important for the engineering application of electromagnetic rail launcher.]]></description><subject>Archard wear model</subject><subject>Armature</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Electric contacts</subject><subject>Electromagnetic railgun</subject><subject>Electromagnetics</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite element simulation</subject><subject>Frictional wear</subject><subject>Interference fit</subject><subject>Launchers</subject><subject>Lorentz covariance</subject><subject>Lorentz force</subject><subject>Lubrication</subject><subject>multi-physics field coupling</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Railguns</subject><subject>Simulation</subject><subject>Sliding friction</subject><subject>Surface morphology</subject><subject>Surface treatment</subject><subject>Volume measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AUXETBUvsLegl48ZK6H9mvYwlVCwXBKh6X3c1LSUmzdZMc-u9NTSm-y3sMM_OGQWhO8IIQrJ-Xeb7abhcUU7pgFCtCyA2aUCJ0yjgTt__uezRr2z0eRg0QlxP0tO364pSEJvkGG5NQJqsafBfDwe4a6CqffNiq3vXNA7orbd3C7LKn6Otl9Zm_pZv313W-3KSeMdWl2jrntGZW85KpDISlVmOQlHOHFdPcESoo1T5zpGDgC--EU4LzQQMio2yK1qNvEezeHGN1sPFkgq3MHxDiztg45KrBZOAlV9I5wDzzkmkNpSosFoQVCjI_eD2OXscYfnpoO7MPfWyG-IZKojnPiMwGFhtZPoa2jVBevxJszg2bsWFzbthcGh5U81FVAcBVoZXmTEn2C6cjdJ0</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ren, Shida</creator><creator>Feng, Gang</creator><creator>Liu, Shaowei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8359-8623</orcidid><orcidid>https://orcid.org/0000-0002-8959-0582</orcidid></search><sort><creationdate>2022</creationdate><title>Study on Wear of Electromagnetic Railgun</title><author>Ren, Shida ; Feng, Gang ; Liu, Shaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-9abbb993a95f384e6a2a90e7255b08395b126229c4b1d3ecdcb6b8655993e6423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Archard wear model</topic><topic>Armature</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Electric contacts</topic><topic>Electromagnetic railgun</topic><topic>Electromagnetics</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite element simulation</topic><topic>Frictional wear</topic><topic>Interference fit</topic><topic>Launchers</topic><topic>Lorentz covariance</topic><topic>Lorentz force</topic><topic>Lubrication</topic><topic>multi-physics field coupling</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Railguns</topic><topic>Simulation</topic><topic>Sliding friction</topic><topic>Surface morphology</topic><topic>Surface treatment</topic><topic>Volume measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Shida</creatorcontrib><creatorcontrib>Feng, Gang</creatorcontrib><creatorcontrib>Liu, Shaowei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Shida</au><au>Feng, Gang</au><au>Liu, Shaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Wear of Electromagnetic Railgun</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>100955</spage><epage>100963</epage><pages>100955-100963</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Sliding friction wear of high-speed current-carrying is a key factor limiting the engineering of electromagnetic railgun, and is also a hot spot and difficult area for current research. In this paper, we simulate the internal ballistic dynamics and electrical contact characteristics based on multi-physics field effects and consider the actual working conditions such as Lorentz force, friction force and interference fit to simulate the motion of the armature in the bore. Based on the Archard wear model, a finite element simulation method combining HyperMesh and ANSYS is proposed to realize the wear prediction. The simulation results are compared with the experimental results to verify the accuracy of the prediction model. The results show that under the single firing condition, the wear is mainly concentrated at the end of the armature arm, and the rail wear is relatively light; with the increase of electromagnetic thrust, the increase of armature wear volume does not change much and is approximately equal; the armature wear volume is influenced by the wear coefficient, in which the armature wear volume increases about 190 times when the wear coefficient increases from <inline-formula> <tex-math notation="LaTeX">1\times 10^{-6} </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">1\times 10^{-3} </tex-math></inline-formula>. Therefore, in order to reduce the degree of wear between the armature and rails, the lubrication conditions should be improved as much as possible. This study provides a simulation method for the wear prediction of electromagnetic rail launcher, which is important for the engineering application of electromagnetic rail launcher.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3208111</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8359-8623</orcidid><orcidid>https://orcid.org/0000-0002-8959-0582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.100955-100963
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3208111
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Archard wear model
Armature
CAD
Computer aided design
Electric contacts
Electromagnetic railgun
Electromagnetics
Finite element analysis
Finite element method
finite element simulation
Frictional wear
Interference fit
Launchers
Lorentz covariance
Lorentz force
Lubrication
multi-physics field coupling
Prediction models
Predictive models
Railguns
Simulation
Sliding friction
Surface morphology
Surface treatment
Volume measurement
title Study on Wear of Electromagnetic Railgun
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Wear%20of%20Electromagnetic%20Railgun&rft.jtitle=IEEE%20access&rft.au=Ren,%20Shida&rft.date=2022&rft.volume=10&rft.spage=100955&rft.epage=100963&rft.pages=100955-100963&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3208111&rft_dat=%3Cproquest_cross%3E2719554174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719554174&rft_id=info:pmid/&rft_ieee_id=9895387&rft_doaj_id=oai_doaj_org_article_4ec7587bbe054c7399ef8da0613d8e4c&rfr_iscdi=true