Improved African Vulture Optimization Algorithm Based on Quasi-oppositional Differential Evolution Operator
In this study, an improved African vulture optimization algorithm (IAVOA) that combines the African vulture optimization algorithm (AVOA) with both quasi-oppositional learning and differential evolution is proposed to address specific drawbacks of the AVOA, including low population diversity, bad de...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 10 |
creator | Liu, Renju Wang, Tianlei Zhou, Jing Hao, Xiaoxi Xu, Ying Qiu, Jiongzhi |
description | In this study, an improved African vulture optimization algorithm (IAVOA) that combines the African vulture optimization algorithm (AVOA) with both quasi-oppositional learning and differential evolution is proposed to address specific drawbacks of the AVOA, including low population diversity, bad development capability, and unbalanced exploration and development capabilities. The improved algorithm has three parts. First, quasi-oppositional learning is introduced in the population initialization and exploration stages to improve population diversity. Second, a differential evolution operator is introduced in the local search position update of each population to improve exploration capability. Third, adaptive parameters are introduced to the differential evolution operator, thus balancing the algorithm exploration and development. A numerical simulation experiment based on 36 different types of benchmark functions showed that the IAVOA can enhance the convergence speed and solution accuracy of the basic AVOA and two variants of AVOA while exhibiting superior performance compared to those of other swarm intelligence algorithms. |
doi_str_mv | 10.1109/ACCESS.2022.3203813 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3203813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9874816</ieee_id><doaj_id>oai_doaj_org_article_0da201e4b4f144c389162a8021f6b5e9</doaj_id><sourcerecordid>2714954808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3fe70dca9e59008456683ddddf5fd4857cfdec89f04d16585b4f9598a45eaf2a3</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIoUqJHkC3IR0LMcPiXyqDpOayCAESTtldhIy5SubKokFSD9-tKREWQvSw5mZrmcoriiZEkp0dftarV-eFgywtiSM8IV5Z-KBaO1rrjk9dmH85fiMsYdyaUyJJtF8WezH4N_wb5sbXAdHMpf05CmgOV2TG7v_kFy_lC2w7MPLv3el98gZnKG7ieIrvLj6KM7cmAob5y1GPCQXL6sX_wwvYm3IwZIPlwUny0MES9P_bz4ebt-XP2o7rbfN6v2ruoEUaniFhvSd6BR6vxQIeta8T6XlbYXSjad7bFT2hLR01oq-SSsllqBkAiWAT8vNrNv72FnxuD2EF6NB2feAB-eDYTkugEN6YERiiJbUCE6rjStGSjCqK2fJOrs9XX2yr_0d8KYzM5PIS8bDWuo0FIoojKLz6wu-BgD2veplJhjSGYOyRxDMqeQsupqVjlEfFdo1YicDv8PBXaPJw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714954808</pqid></control><display><type>article</type><title>Improved African Vulture Optimization Algorithm Based on Quasi-oppositional Differential Evolution Operator</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Renju ; Wang, Tianlei ; Zhou, Jing ; Hao, Xiaoxi ; Xu, Ying ; Qiu, Jiongzhi</creator><creatorcontrib>Liu, Renju ; Wang, Tianlei ; Zhou, Jing ; Hao, Xiaoxi ; Xu, Ying ; Qiu, Jiongzhi</creatorcontrib><description>In this study, an improved African vulture optimization algorithm (IAVOA) that combines the African vulture optimization algorithm (AVOA) with both quasi-oppositional learning and differential evolution is proposed to address specific drawbacks of the AVOA, including low population diversity, bad development capability, and unbalanced exploration and development capabilities. The improved algorithm has three parts. First, quasi-oppositional learning is introduced in the population initialization and exploration stages to improve population diversity. Second, a differential evolution operator is introduced in the local search position update of each population to improve exploration capability. Third, adaptive parameters are introduced to the differential evolution operator, thus balancing the algorithm exploration and development. A numerical simulation experiment based on 36 different types of benchmark functions showed that the IAVOA can enhance the convergence speed and solution accuracy of the basic AVOA and two variants of AVOA while exhibiting superior performance compared to those of other swarm intelligence algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3203813</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>African Vulture Optimization Algorithm ; Algorithms ; Basic converters ; Benchmark Function ; Benchmarks ; Birds ; Convergence ; Differential Evolution ; Evolutionary computation ; Exploration ; Machine learning ; Mathematical models ; Metaheuristics ; Operators (mathematics) ; Optimization ; Optimization algorithms ; Particle swarm optimization ; Population ; Quasi-oppositional Learning ; Sociology ; Statistics ; Swarm intelligence ; Swarm Intelligence Algorithm</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3fe70dca9e59008456683ddddf5fd4857cfdec89f04d16585b4f9598a45eaf2a3</citedby><cites>FETCH-LOGICAL-c408t-3fe70dca9e59008456683ddddf5fd4857cfdec89f04d16585b4f9598a45eaf2a3</cites><orcidid>0000-0003-0597-8537 ; 0000-0002-6983-0788 ; 0000-0002-5944-2079 ; 0000-0002-1232-0453 ; 0000-0002-2249-852X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9874816$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Liu, Renju</creatorcontrib><creatorcontrib>Wang, Tianlei</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Hao, Xiaoxi</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Qiu, Jiongzhi</creatorcontrib><title>Improved African Vulture Optimization Algorithm Based on Quasi-oppositional Differential Evolution Operator</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this study, an improved African vulture optimization algorithm (IAVOA) that combines the African vulture optimization algorithm (AVOA) with both quasi-oppositional learning and differential evolution is proposed to address specific drawbacks of the AVOA, including low population diversity, bad development capability, and unbalanced exploration and development capabilities. The improved algorithm has three parts. First, quasi-oppositional learning is introduced in the population initialization and exploration stages to improve population diversity. Second, a differential evolution operator is introduced in the local search position update of each population to improve exploration capability. Third, adaptive parameters are introduced to the differential evolution operator, thus balancing the algorithm exploration and development. A numerical simulation experiment based on 36 different types of benchmark functions showed that the IAVOA can enhance the convergence speed and solution accuracy of the basic AVOA and two variants of AVOA while exhibiting superior performance compared to those of other swarm intelligence algorithms.</description><subject>African Vulture Optimization Algorithm</subject><subject>Algorithms</subject><subject>Basic converters</subject><subject>Benchmark Function</subject><subject>Benchmarks</subject><subject>Birds</subject><subject>Convergence</subject><subject>Differential Evolution</subject><subject>Evolutionary computation</subject><subject>Exploration</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Metaheuristics</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Population</subject><subject>Quasi-oppositional Learning</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Swarm intelligence</subject><subject>Swarm Intelligence Algorithm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIoUqJHkC3IR0LMcPiXyqDpOayCAESTtldhIy5SubKokFSD9-tKREWQvSw5mZrmcoriiZEkp0dftarV-eFgywtiSM8IV5Z-KBaO1rrjk9dmH85fiMsYdyaUyJJtF8WezH4N_wb5sbXAdHMpf05CmgOV2TG7v_kFy_lC2w7MPLv3el98gZnKG7ieIrvLj6KM7cmAob5y1GPCQXL6sX_wwvYm3IwZIPlwUny0MES9P_bz4ebt-XP2o7rbfN6v2ruoEUaniFhvSd6BR6vxQIeta8T6XlbYXSjad7bFT2hLR01oq-SSsllqBkAiWAT8vNrNv72FnxuD2EF6NB2feAB-eDYTkugEN6YERiiJbUCE6rjStGSjCqK2fJOrs9XX2yr_0d8KYzM5PIS8bDWuo0FIoojKLz6wu-BgD2veplJhjSGYOyRxDMqeQsupqVjlEfFdo1YicDv8PBXaPJw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liu, Renju</creator><creator>Wang, Tianlei</creator><creator>Zhou, Jing</creator><creator>Hao, Xiaoxi</creator><creator>Xu, Ying</creator><creator>Qiu, Jiongzhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0597-8537</orcidid><orcidid>https://orcid.org/0000-0002-6983-0788</orcidid><orcidid>https://orcid.org/0000-0002-5944-2079</orcidid><orcidid>https://orcid.org/0000-0002-1232-0453</orcidid><orcidid>https://orcid.org/0000-0002-2249-852X</orcidid></search><sort><creationdate>2022</creationdate><title>Improved African Vulture Optimization Algorithm Based on Quasi-oppositional Differential Evolution Operator</title><author>Liu, Renju ; Wang, Tianlei ; Zhou, Jing ; Hao, Xiaoxi ; Xu, Ying ; Qiu, Jiongzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3fe70dca9e59008456683ddddf5fd4857cfdec89f04d16585b4f9598a45eaf2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>African Vulture Optimization Algorithm</topic><topic>Algorithms</topic><topic>Basic converters</topic><topic>Benchmark Function</topic><topic>Benchmarks</topic><topic>Birds</topic><topic>Convergence</topic><topic>Differential Evolution</topic><topic>Evolutionary computation</topic><topic>Exploration</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Metaheuristics</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Population</topic><topic>Quasi-oppositional Learning</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Swarm intelligence</topic><topic>Swarm Intelligence Algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Renju</creatorcontrib><creatorcontrib>Wang, Tianlei</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Hao, Xiaoxi</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Qiu, Jiongzhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Renju</au><au>Wang, Tianlei</au><au>Zhou, Jing</au><au>Hao, Xiaoxi</au><au>Xu, Ying</au><au>Qiu, Jiongzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved African Vulture Optimization Algorithm Based on Quasi-oppositional Differential Evolution Operator</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this study, an improved African vulture optimization algorithm (IAVOA) that combines the African vulture optimization algorithm (AVOA) with both quasi-oppositional learning and differential evolution is proposed to address specific drawbacks of the AVOA, including low population diversity, bad development capability, and unbalanced exploration and development capabilities. The improved algorithm has three parts. First, quasi-oppositional learning is introduced in the population initialization and exploration stages to improve population diversity. Second, a differential evolution operator is introduced in the local search position update of each population to improve exploration capability. Third, adaptive parameters are introduced to the differential evolution operator, thus balancing the algorithm exploration and development. A numerical simulation experiment based on 36 different types of benchmark functions showed that the IAVOA can enhance the convergence speed and solution accuracy of the basic AVOA and two variants of AVOA while exhibiting superior performance compared to those of other swarm intelligence algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3203813</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0597-8537</orcidid><orcidid>https://orcid.org/0000-0002-6983-0788</orcidid><orcidid>https://orcid.org/0000-0002-5944-2079</orcidid><orcidid>https://orcid.org/0000-0002-1232-0453</orcidid><orcidid>https://orcid.org/0000-0002-2249-852X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3203813 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | African Vulture Optimization Algorithm Algorithms Basic converters Benchmark Function Benchmarks Birds Convergence Differential Evolution Evolutionary computation Exploration Machine learning Mathematical models Metaheuristics Operators (mathematics) Optimization Optimization algorithms Particle swarm optimization Population Quasi-oppositional Learning Sociology Statistics Swarm intelligence Swarm Intelligence Algorithm |
title | Improved African Vulture Optimization Algorithm Based on Quasi-oppositional Differential Evolution Operator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20African%20Vulture%20Optimization%20Algorithm%20Based%20on%20Quasi-oppositional%20Differential%20Evolution%20Operator&rft.jtitle=IEEE%20access&rft.au=Liu,%20Renju&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3203813&rft_dat=%3Cproquest_cross%3E2714954808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714954808&rft_id=info:pmid/&rft_ieee_id=9874816&rft_doaj_id=oai_doaj_org_article_0da201e4b4f144c389162a8021f6b5e9&rfr_iscdi=true |