Improved African Vulture Optimization Algorithm Based on Quasi-oppositional Differential Evolution Operator

In this study, an improved African vulture optimization algorithm (IAVOA) that combines the African vulture optimization algorithm (AVOA) with both quasi-oppositional learning and differential evolution is proposed to address specific drawbacks of the AVOA, including low population diversity, bad de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.1-1
Hauptverfasser: Liu, Renju, Wang, Tianlei, Zhou, Jing, Hao, Xiaoxi, Xu, Ying, Qiu, Jiongzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 10
creator Liu, Renju
Wang, Tianlei
Zhou, Jing
Hao, Xiaoxi
Xu, Ying
Qiu, Jiongzhi
description In this study, an improved African vulture optimization algorithm (IAVOA) that combines the African vulture optimization algorithm (AVOA) with both quasi-oppositional learning and differential evolution is proposed to address specific drawbacks of the AVOA, including low population diversity, bad development capability, and unbalanced exploration and development capabilities. The improved algorithm has three parts. First, quasi-oppositional learning is introduced in the population initialization and exploration stages to improve population diversity. Second, a differential evolution operator is introduced in the local search position update of each population to improve exploration capability. Third, adaptive parameters are introduced to the differential evolution operator, thus balancing the algorithm exploration and development. A numerical simulation experiment based on 36 different types of benchmark functions showed that the IAVOA can enhance the convergence speed and solution accuracy of the basic AVOA and two variants of AVOA while exhibiting superior performance compared to those of other swarm intelligence algorithms.
doi_str_mv 10.1109/ACCESS.2022.3203813
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3203813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9874816</ieee_id><doaj_id>oai_doaj_org_article_0da201e4b4f144c389162a8021f6b5e9</doaj_id><sourcerecordid>2714954808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3fe70dca9e59008456683ddddf5fd4857cfdec89f04d16585b4f9598a45eaf2a3</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIoUqJHkC3IR0LMcPiXyqDpOayCAESTtldhIy5SubKokFSD9-tKREWQvSw5mZrmcoriiZEkp0dftarV-eFgywtiSM8IV5Z-KBaO1rrjk9dmH85fiMsYdyaUyJJtF8WezH4N_wb5sbXAdHMpf05CmgOV2TG7v_kFy_lC2w7MPLv3el98gZnKG7ieIrvLj6KM7cmAob5y1GPCQXL6sX_wwvYm3IwZIPlwUny0MES9P_bz4ebt-XP2o7rbfN6v2ruoEUaniFhvSd6BR6vxQIeta8T6XlbYXSjad7bFT2hLR01oq-SSsllqBkAiWAT8vNrNv72FnxuD2EF6NB2feAB-eDYTkugEN6YERiiJbUCE6rjStGSjCqK2fJOrs9XX2yr_0d8KYzM5PIS8bDWuo0FIoojKLz6wu-BgD2veplJhjSGYOyRxDMqeQsupqVjlEfFdo1YicDv8PBXaPJw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714954808</pqid></control><display><type>article</type><title>Improved African Vulture Optimization Algorithm Based on Quasi-oppositional Differential Evolution Operator</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Renju ; Wang, Tianlei ; Zhou, Jing ; Hao, Xiaoxi ; Xu, Ying ; Qiu, Jiongzhi</creator><creatorcontrib>Liu, Renju ; Wang, Tianlei ; Zhou, Jing ; Hao, Xiaoxi ; Xu, Ying ; Qiu, Jiongzhi</creatorcontrib><description>In this study, an improved African vulture optimization algorithm (IAVOA) that combines the African vulture optimization algorithm (AVOA) with both quasi-oppositional learning and differential evolution is proposed to address specific drawbacks of the AVOA, including low population diversity, bad development capability, and unbalanced exploration and development capabilities. The improved algorithm has three parts. First, quasi-oppositional learning is introduced in the population initialization and exploration stages to improve population diversity. Second, a differential evolution operator is introduced in the local search position update of each population to improve exploration capability. Third, adaptive parameters are introduced to the differential evolution operator, thus balancing the algorithm exploration and development. A numerical simulation experiment based on 36 different types of benchmark functions showed that the IAVOA can enhance the convergence speed and solution accuracy of the basic AVOA and two variants of AVOA while exhibiting superior performance compared to those of other swarm intelligence algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3203813</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>African Vulture Optimization Algorithm ; Algorithms ; Basic converters ; Benchmark Function ; Benchmarks ; Birds ; Convergence ; Differential Evolution ; Evolutionary computation ; Exploration ; Machine learning ; Mathematical models ; Metaheuristics ; Operators (mathematics) ; Optimization ; Optimization algorithms ; Particle swarm optimization ; Population ; Quasi-oppositional Learning ; Sociology ; Statistics ; Swarm intelligence ; Swarm Intelligence Algorithm</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3fe70dca9e59008456683ddddf5fd4857cfdec89f04d16585b4f9598a45eaf2a3</citedby><cites>FETCH-LOGICAL-c408t-3fe70dca9e59008456683ddddf5fd4857cfdec89f04d16585b4f9598a45eaf2a3</cites><orcidid>0000-0003-0597-8537 ; 0000-0002-6983-0788 ; 0000-0002-5944-2079 ; 0000-0002-1232-0453 ; 0000-0002-2249-852X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9874816$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Liu, Renju</creatorcontrib><creatorcontrib>Wang, Tianlei</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Hao, Xiaoxi</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Qiu, Jiongzhi</creatorcontrib><title>Improved African Vulture Optimization Algorithm Based on Quasi-oppositional Differential Evolution Operator</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this study, an improved African vulture optimization algorithm (IAVOA) that combines the African vulture optimization algorithm (AVOA) with both quasi-oppositional learning and differential evolution is proposed to address specific drawbacks of the AVOA, including low population diversity, bad development capability, and unbalanced exploration and development capabilities. The improved algorithm has three parts. First, quasi-oppositional learning is introduced in the population initialization and exploration stages to improve population diversity. Second, a differential evolution operator is introduced in the local search position update of each population to improve exploration capability. Third, adaptive parameters are introduced to the differential evolution operator, thus balancing the algorithm exploration and development. A numerical simulation experiment based on 36 different types of benchmark functions showed that the IAVOA can enhance the convergence speed and solution accuracy of the basic AVOA and two variants of AVOA while exhibiting superior performance compared to those of other swarm intelligence algorithms.</description><subject>African Vulture Optimization Algorithm</subject><subject>Algorithms</subject><subject>Basic converters</subject><subject>Benchmark Function</subject><subject>Benchmarks</subject><subject>Birds</subject><subject>Convergence</subject><subject>Differential Evolution</subject><subject>Evolutionary computation</subject><subject>Exploration</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Metaheuristics</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Population</subject><subject>Quasi-oppositional Learning</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Swarm intelligence</subject><subject>Swarm Intelligence Algorithm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIoUqJHkC3IR0LMcPiXyqDpOayCAESTtldhIy5SubKokFSD9-tKREWQvSw5mZrmcoriiZEkp0dftarV-eFgywtiSM8IV5Z-KBaO1rrjk9dmH85fiMsYdyaUyJJtF8WezH4N_wb5sbXAdHMpf05CmgOV2TG7v_kFy_lC2w7MPLv3el98gZnKG7ieIrvLj6KM7cmAob5y1GPCQXL6sX_wwvYm3IwZIPlwUny0MES9P_bz4ebt-XP2o7rbfN6v2ruoEUaniFhvSd6BR6vxQIeta8T6XlbYXSjad7bFT2hLR01oq-SSsllqBkAiWAT8vNrNv72FnxuD2EF6NB2feAB-eDYTkugEN6YERiiJbUCE6rjStGSjCqK2fJOrs9XX2yr_0d8KYzM5PIS8bDWuo0FIoojKLz6wu-BgD2veplJhjSGYOyRxDMqeQsupqVjlEfFdo1YicDv8PBXaPJw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liu, Renju</creator><creator>Wang, Tianlei</creator><creator>Zhou, Jing</creator><creator>Hao, Xiaoxi</creator><creator>Xu, Ying</creator><creator>Qiu, Jiongzhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0597-8537</orcidid><orcidid>https://orcid.org/0000-0002-6983-0788</orcidid><orcidid>https://orcid.org/0000-0002-5944-2079</orcidid><orcidid>https://orcid.org/0000-0002-1232-0453</orcidid><orcidid>https://orcid.org/0000-0002-2249-852X</orcidid></search><sort><creationdate>2022</creationdate><title>Improved African Vulture Optimization Algorithm Based on Quasi-oppositional Differential Evolution Operator</title><author>Liu, Renju ; Wang, Tianlei ; Zhou, Jing ; Hao, Xiaoxi ; Xu, Ying ; Qiu, Jiongzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3fe70dca9e59008456683ddddf5fd4857cfdec89f04d16585b4f9598a45eaf2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>African Vulture Optimization Algorithm</topic><topic>Algorithms</topic><topic>Basic converters</topic><topic>Benchmark Function</topic><topic>Benchmarks</topic><topic>Birds</topic><topic>Convergence</topic><topic>Differential Evolution</topic><topic>Evolutionary computation</topic><topic>Exploration</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Metaheuristics</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Population</topic><topic>Quasi-oppositional Learning</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Swarm intelligence</topic><topic>Swarm Intelligence Algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Renju</creatorcontrib><creatorcontrib>Wang, Tianlei</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Hao, Xiaoxi</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Qiu, Jiongzhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Renju</au><au>Wang, Tianlei</au><au>Zhou, Jing</au><au>Hao, Xiaoxi</au><au>Xu, Ying</au><au>Qiu, Jiongzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved African Vulture Optimization Algorithm Based on Quasi-oppositional Differential Evolution Operator</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this study, an improved African vulture optimization algorithm (IAVOA) that combines the African vulture optimization algorithm (AVOA) with both quasi-oppositional learning and differential evolution is proposed to address specific drawbacks of the AVOA, including low population diversity, bad development capability, and unbalanced exploration and development capabilities. The improved algorithm has three parts. First, quasi-oppositional learning is introduced in the population initialization and exploration stages to improve population diversity. Second, a differential evolution operator is introduced in the local search position update of each population to improve exploration capability. Third, adaptive parameters are introduced to the differential evolution operator, thus balancing the algorithm exploration and development. A numerical simulation experiment based on 36 different types of benchmark functions showed that the IAVOA can enhance the convergence speed and solution accuracy of the basic AVOA and two variants of AVOA while exhibiting superior performance compared to those of other swarm intelligence algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3203813</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0597-8537</orcidid><orcidid>https://orcid.org/0000-0002-6983-0788</orcidid><orcidid>https://orcid.org/0000-0002-5944-2079</orcidid><orcidid>https://orcid.org/0000-0002-1232-0453</orcidid><orcidid>https://orcid.org/0000-0002-2249-852X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3203813
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects African Vulture Optimization Algorithm
Algorithms
Basic converters
Benchmark Function
Benchmarks
Birds
Convergence
Differential Evolution
Evolutionary computation
Exploration
Machine learning
Mathematical models
Metaheuristics
Operators (mathematics)
Optimization
Optimization algorithms
Particle swarm optimization
Population
Quasi-oppositional Learning
Sociology
Statistics
Swarm intelligence
Swarm Intelligence Algorithm
title Improved African Vulture Optimization Algorithm Based on Quasi-oppositional Differential Evolution Operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20African%20Vulture%20Optimization%20Algorithm%20Based%20on%20Quasi-oppositional%20Differential%20Evolution%20Operator&rft.jtitle=IEEE%20access&rft.au=Liu,%20Renju&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3203813&rft_dat=%3Cproquest_cross%3E2714954808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714954808&rft_id=info:pmid/&rft_ieee_id=9874816&rft_doaj_id=oai_doaj_org_article_0da201e4b4f144c389162a8021f6b5e9&rfr_iscdi=true