A High-Efficiency Optimized Detection Algorithm for Non-Stationary Marine Acoustic Signals in the Time-Frequency Domain
As the amount of data generated by marine acoustic observation signals grows, efficient information acquisition of non-stationary observation signals has become a major challenge in marine observation platform technology. In this paper, an optimized algorithm is proposed for the non-stationary marin...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.64085-64094 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64094 |
---|---|
container_issue | |
container_start_page | 64085 |
container_title | IEEE access |
container_volume | 10 |
creator | Cao, Tianyu Bian, Mengqi Yang, Yichen Xu, Zhongwei Zhao, Xiaoqun |
description | As the amount of data generated by marine acoustic observation signals grows, efficient information acquisition of non-stationary observation signals has become a major challenge in marine observation platform technology. In this paper, an optimized algorithm is proposed for the non-stationary marine acoustic signals. This algorithm can increase the effective data acquisition rate while decreasing the observation platform's algorithm energy consumption. To constantly enhance the processing of the observation signal through the self-feedback, the optimized algorithm is based on the sign function, the adjustable coefficient, the adaptive step size, and the frequency domain threshold. The simulation verification experiment and the application experiment based on the optimized algorithm are shown in this study. The experimental results indicate that the optimized algorithm efficiency is 78.16% in the simulation conditions and reaches 89.89% in the application experiment. And the data compression rates for the simulation conditions and the application experiment are 74.65% and 69.32%, respectively. As a result, the optimized algorithm's performance has significantly improved. |
doi_str_mv | 10.1109/ACCESS.2022.3182701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3182701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9795020</ieee_id><doaj_id>oai_doaj_org_article_153466e069da47fabe27233e96f7aa04</doaj_id><sourcerecordid>2679392826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a0695d8686c7f2228afdd0b734083361029b785d338a42c90f8ce9a8127b81433</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIoWaJDmC3Ih0LNccinxcRQcpwmQJgenZ4KmljYNS3QpGkX69aWjIAgvS-zOzM5iquqa0QVjVP_olsvVer0ACrDgTIGk7FN1AUzomrdcfP7w_1pdTdOelqdKq5UX1d-O3IXtrl55H1zA0b2Qp2MOQ_iHPbnBjC6HOJLusI0p5N1AfEzkMY71OtvzxKYX8sumMCLpXDxNOTiyDtvRHiYSRpJ3SJ7DgPVtwj-nV_mbONgwfqu--ILBq7d6Wf2-XT0v7-qHp5_3y-6hdg1Vuba02OyVUMJJDwDK-r6nG8nLlHPBKOiNVG3PubINOE29cqitYiA3ijWcX1b3s24f7d4cUxiKYxNtMK-NmLbGpmL6gIa1vBECy8beNtLbDYIEzlELL62lTdH6PmsdUyzHTNns4ymdTzUgpOYaFIiC4jPKpThNCf37VkbNOTAzB2bOgZm3wArremYFRHxnaKlbCpT_ByRfkGs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679392826</pqid></control><display><type>article</type><title>A High-Efficiency Optimized Detection Algorithm for Non-Stationary Marine Acoustic Signals in the Time-Frequency Domain</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cao, Tianyu ; Bian, Mengqi ; Yang, Yichen ; Xu, Zhongwei ; Zhao, Xiaoqun</creator><creatorcontrib>Cao, Tianyu ; Bian, Mengqi ; Yang, Yichen ; Xu, Zhongwei ; Zhao, Xiaoqun</creatorcontrib><description>As the amount of data generated by marine acoustic observation signals grows, efficient information acquisition of non-stationary observation signals has become a major challenge in marine observation platform technology. In this paper, an optimized algorithm is proposed for the non-stationary marine acoustic signals. This algorithm can increase the effective data acquisition rate while decreasing the observation platform's algorithm energy consumption. To constantly enhance the processing of the observation signal through the self-feedback, the optimized algorithm is based on the sign function, the adjustable coefficient, the adaptive step size, and the frequency domain threshold. The simulation verification experiment and the application experiment based on the optimized algorithm are shown in this study. The experimental results indicate that the optimized algorithm efficiency is 78.16% in the simulation conditions and reaches 89.89% in the application experiment. And the data compression rates for the simulation conditions and the application experiment are 74.65% and 69.32%, respectively. As a result, the optimized algorithm's performance has significantly improved.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3182701</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustics ; Algorithms ; Background noise ; Classification algorithms ; Data acquisition ; Data compression ; Data processing ; Energy consumption ; Experiments ; Frequency domain analysis ; Marine technology ; Memory ; Non-stationary marine acoustic signal ; self-feedback ; Signal processing ; Signal processing algorithms ; signal processing efficiency ; Simulation ; Time-frequency analysis ; time-frequency data compression</subject><ispartof>IEEE access, 2022, Vol.10, p.64085-64094</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a0695d8686c7f2228afdd0b734083361029b785d338a42c90f8ce9a8127b81433</citedby><cites>FETCH-LOGICAL-c408t-a0695d8686c7f2228afdd0b734083361029b785d338a42c90f8ce9a8127b81433</cites><orcidid>0000-0003-3188-8818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9795020$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Cao, Tianyu</creatorcontrib><creatorcontrib>Bian, Mengqi</creatorcontrib><creatorcontrib>Yang, Yichen</creatorcontrib><creatorcontrib>Xu, Zhongwei</creatorcontrib><creatorcontrib>Zhao, Xiaoqun</creatorcontrib><title>A High-Efficiency Optimized Detection Algorithm for Non-Stationary Marine Acoustic Signals in the Time-Frequency Domain</title><title>IEEE access</title><addtitle>Access</addtitle><description>As the amount of data generated by marine acoustic observation signals grows, efficient information acquisition of non-stationary observation signals has become a major challenge in marine observation platform technology. In this paper, an optimized algorithm is proposed for the non-stationary marine acoustic signals. This algorithm can increase the effective data acquisition rate while decreasing the observation platform's algorithm energy consumption. To constantly enhance the processing of the observation signal through the self-feedback, the optimized algorithm is based on the sign function, the adjustable coefficient, the adaptive step size, and the frequency domain threshold. The simulation verification experiment and the application experiment based on the optimized algorithm are shown in this study. The experimental results indicate that the optimized algorithm efficiency is 78.16% in the simulation conditions and reaches 89.89% in the application experiment. And the data compression rates for the simulation conditions and the application experiment are 74.65% and 69.32%, respectively. As a result, the optimized algorithm's performance has significantly improved.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Background noise</subject><subject>Classification algorithms</subject><subject>Data acquisition</subject><subject>Data compression</subject><subject>Data processing</subject><subject>Energy consumption</subject><subject>Experiments</subject><subject>Frequency domain analysis</subject><subject>Marine technology</subject><subject>Memory</subject><subject>Non-stationary marine acoustic signal</subject><subject>self-feedback</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>signal processing efficiency</subject><subject>Simulation</subject><subject>Time-frequency analysis</subject><subject>time-frequency data compression</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIoWaJDmC3Ih0LNccinxcRQcpwmQJgenZ4KmljYNS3QpGkX69aWjIAgvS-zOzM5iquqa0QVjVP_olsvVer0ACrDgTIGk7FN1AUzomrdcfP7w_1pdTdOelqdKq5UX1d-O3IXtrl55H1zA0b2Qp2MOQ_iHPbnBjC6HOJLusI0p5N1AfEzkMY71OtvzxKYX8sumMCLpXDxNOTiyDtvRHiYSRpJ3SJ7DgPVtwj-nV_mbONgwfqu--ILBq7d6Wf2-XT0v7-qHp5_3y-6hdg1Vuba02OyVUMJJDwDK-r6nG8nLlHPBKOiNVG3PubINOE29cqitYiA3ijWcX1b3s24f7d4cUxiKYxNtMK-NmLbGpmL6gIa1vBECy8beNtLbDYIEzlELL62lTdH6PmsdUyzHTNns4ymdTzUgpOYaFIiC4jPKpThNCf37VkbNOTAzB2bOgZm3wArremYFRHxnaKlbCpT_ByRfkGs</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cao, Tianyu</creator><creator>Bian, Mengqi</creator><creator>Yang, Yichen</creator><creator>Xu, Zhongwei</creator><creator>Zhao, Xiaoqun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3188-8818</orcidid></search><sort><creationdate>2022</creationdate><title>A High-Efficiency Optimized Detection Algorithm for Non-Stationary Marine Acoustic Signals in the Time-Frequency Domain</title><author>Cao, Tianyu ; Bian, Mengqi ; Yang, Yichen ; Xu, Zhongwei ; Zhao, Xiaoqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a0695d8686c7f2228afdd0b734083361029b785d338a42c90f8ce9a8127b81433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Background noise</topic><topic>Classification algorithms</topic><topic>Data acquisition</topic><topic>Data compression</topic><topic>Data processing</topic><topic>Energy consumption</topic><topic>Experiments</topic><topic>Frequency domain analysis</topic><topic>Marine technology</topic><topic>Memory</topic><topic>Non-stationary marine acoustic signal</topic><topic>self-feedback</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>signal processing efficiency</topic><topic>Simulation</topic><topic>Time-frequency analysis</topic><topic>time-frequency data compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Tianyu</creatorcontrib><creatorcontrib>Bian, Mengqi</creatorcontrib><creatorcontrib>Yang, Yichen</creatorcontrib><creatorcontrib>Xu, Zhongwei</creatorcontrib><creatorcontrib>Zhao, Xiaoqun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Tianyu</au><au>Bian, Mengqi</au><au>Yang, Yichen</au><au>Xu, Zhongwei</au><au>Zhao, Xiaoqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Efficiency Optimized Detection Algorithm for Non-Stationary Marine Acoustic Signals in the Time-Frequency Domain</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>64085</spage><epage>64094</epage><pages>64085-64094</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As the amount of data generated by marine acoustic observation signals grows, efficient information acquisition of non-stationary observation signals has become a major challenge in marine observation platform technology. In this paper, an optimized algorithm is proposed for the non-stationary marine acoustic signals. This algorithm can increase the effective data acquisition rate while decreasing the observation platform's algorithm energy consumption. To constantly enhance the processing of the observation signal through the self-feedback, the optimized algorithm is based on the sign function, the adjustable coefficient, the adaptive step size, and the frequency domain threshold. The simulation verification experiment and the application experiment based on the optimized algorithm are shown in this study. The experimental results indicate that the optimized algorithm efficiency is 78.16% in the simulation conditions and reaches 89.89% in the application experiment. And the data compression rates for the simulation conditions and the application experiment are 74.65% and 69.32%, respectively. As a result, the optimized algorithm's performance has significantly improved.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3182701</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3188-8818</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.64085-64094 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3182701 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Acoustics Algorithms Background noise Classification algorithms Data acquisition Data compression Data processing Energy consumption Experiments Frequency domain analysis Marine technology Memory Non-stationary marine acoustic signal self-feedback Signal processing Signal processing algorithms signal processing efficiency Simulation Time-frequency analysis time-frequency data compression |
title | A High-Efficiency Optimized Detection Algorithm for Non-Stationary Marine Acoustic Signals in the Time-Frequency Domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Efficiency%20Optimized%20Detection%20Algorithm%20for%20Non-Stationary%20Marine%20Acoustic%20Signals%20in%20the%20Time-Frequency%20Domain&rft.jtitle=IEEE%20access&rft.au=Cao,%20Tianyu&rft.date=2022&rft.volume=10&rft.spage=64085&rft.epage=64094&rft.pages=64085-64094&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3182701&rft_dat=%3Cproquest_cross%3E2679392826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679392826&rft_id=info:pmid/&rft_ieee_id=9795020&rft_doaj_id=oai_doaj_org_article_153466e069da47fabe27233e96f7aa04&rfr_iscdi=true |