Deeply Trained Real-Time Body Sensor Networks for Analyzing the Symptoms of Parkinson's Disease

Parkinson's Disease (PD) is a neural system disorder that disturbs the mental activities and physical activities of human beings. Analyzing the symptoms and biosignal data of PD is crucially focused in medical research fields. The existing PD diagnosis models are limited to real-time issues, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.63403-63421
Hauptverfasser: Soundararajan, Rajasoundaran, Prabu, A. V., Routray, Sidheswar, Malla, Prince Priya, Ray, Arun Kumar, Palai, Gopinath, Faragallah, Osama S., Baz, Mohammed, Abualnaja, Matokah M., Eid, Mohamoud M. A., Rashed, Ahmed Nabih Zaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63421
container_issue
container_start_page 63403
container_title IEEE access
container_volume 10
creator Soundararajan, Rajasoundaran
Prabu, A. V.
Routray, Sidheswar
Malla, Prince Priya
Ray, Arun Kumar
Palai, Gopinath
Faragallah, Osama S.
Baz, Mohammed
Abualnaja, Matokah M.
Eid, Mohamoud M. A.
Rashed, Ahmed Nabih Zaki
description Parkinson's Disease (PD) is a neural system disorder that disturbs the mental activities and physical activities of human beings. Analyzing the symptoms and biosignal data of PD is crucially focused in medical research fields. The existing PD diagnosis models are limited to real-time issues, insufficient deep data extraction, and early monitoring problems. On the scope, the proposed Optimal Health Support and PD Analysis System (OHPAS) analyses the symptoms of PD using a deeply trained biosensors network environment. The novel system trains the biosensor network using complex Machine Learning (ML) and Deep Learning (DL) approaches. The environment of OHPAS sets up acoustic sensors (UT-PF), microphones (MC-1500 unit), and multimodal sensor units (MC-10 sensor). MC-10 is the sensor suite that has an accelerometer sensor, gyro sensor, and Electro Cardio Gram (ECG) sensor to observe the biosignals. For establishing the biodata analysis framework, OHPAS initiates the fusion of Variable Auto Encoder (VAER) and K-Means clustering techniques. This phase comprises dataset feature reduction, data regularization, and clustering operations to make the dataset effective for the training process. Finally, the Long Short Term Memory network (LSTM) uses the preprocessed dataset for computing the training dataset. The proposed OHPAS contributes novel features such as a real-time patient monitoring environment, effective sensor data reduction, distributed sensor data analysis, day-wise PD symptom prediction, reactive PD alerts, and accurate early detection solutions. Considering effective medical data analysis with minimal response time, the proposed model creates reactive body sensor network. Under this sensor platform, sensor modules contain proposed DL procedures in its internal memory for initiating data analysis practices. Consequently, the symptoms of PD are commendably detected and predicted with minimal response time. The experimental results indicate the proposed PD system outperforms the existing systems with 8% to 10% of better results.
doi_str_mv 10.1109/ACCESS.2022.3181985
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3181985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9793690</ieee_id><doaj_id>oai_doaj_org_article_1e7c11fc7f81467781c02910949e0116</doaj_id><sourcerecordid>2679392812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2535-a58c74570217febe6a44a7f3d5873b8615a54e5a2b37cb785cd7478f985b803a3</originalsourceid><addsrcrecordid>eNpNUcFu1DAQjRCVqEq_oBdLHDhl67Hj2D4u21IqVVCxy9lynHHxNhsvdioUvh6XVBVzmZmneW8086rqAugKgOrL9WZzvd2uGGVsxUGBVuJNdcqg1TUXvH37X_2uOs95T0uoAgl5WpkrxOMwk12yYcSefEc71LtwQPIp9jPZ4phjIl9x-h3TYya-NOvRDvOfMD6Q6SeS7Xw4TvGQSfTk3qbHUAjjx0yuQkab8X114u2Q8fwln1U_Pl_vNl_qu283t5v1Xe2Y4KK2QjnZCEkZSI8dtrZprPS8F0ryTrUgrGhQWNZx6TqphOtlI5Uvt3aKcsvPqttFt492b44pHGyaTbTB_ANiejA2TcENaAClA_BOegVNK6UCR5kun2w0UoC2aH1YtI4p_nrCPJl9fErl6mxYKzXXTAErU3yZcinmnNC_bgVqno0xizHm2RjzYkxhXSysgIivDF1UW035X-Wrh38</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679392812</pqid></control><display><type>article</type><title>Deeply Trained Real-Time Body Sensor Networks for Analyzing the Symptoms of Parkinson's Disease</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Soundararajan, Rajasoundaran ; Prabu, A. V. ; Routray, Sidheswar ; Malla, Prince Priya ; Ray, Arun Kumar ; Palai, Gopinath ; Faragallah, Osama S. ; Baz, Mohammed ; Abualnaja, Matokah M. ; Eid, Mohamoud M. A. ; Rashed, Ahmed Nabih Zaki</creator><creatorcontrib>Soundararajan, Rajasoundaran ; Prabu, A. V. ; Routray, Sidheswar ; Malla, Prince Priya ; Ray, Arun Kumar ; Palai, Gopinath ; Faragallah, Osama S. ; Baz, Mohammed ; Abualnaja, Matokah M. ; Eid, Mohamoud M. A. ; Rashed, Ahmed Nabih Zaki</creatorcontrib><description>Parkinson's Disease (PD) is a neural system disorder that disturbs the mental activities and physical activities of human beings. Analyzing the symptoms and biosignal data of PD is crucially focused in medical research fields. The existing PD diagnosis models are limited to real-time issues, insufficient deep data extraction, and early monitoring problems. On the scope, the proposed Optimal Health Support and PD Analysis System (OHPAS) analyses the symptoms of PD using a deeply trained biosensors network environment. The novel system trains the biosensor network using complex Machine Learning (ML) and Deep Learning (DL) approaches. The environment of OHPAS sets up acoustic sensors (UT-PF), microphones (MC-1500 unit), and multimodal sensor units (MC-10 sensor). MC-10 is the sensor suite that has an accelerometer sensor, gyro sensor, and Electro Cardio Gram (ECG) sensor to observe the biosignals. For establishing the biodata analysis framework, OHPAS initiates the fusion of Variable Auto Encoder (VAER) and K-Means clustering techniques. This phase comprises dataset feature reduction, data regularization, and clustering operations to make the dataset effective for the training process. Finally, the Long Short Term Memory network (LSTM) uses the preprocessed dataset for computing the training dataset. The proposed OHPAS contributes novel features such as a real-time patient monitoring environment, effective sensor data reduction, distributed sensor data analysis, day-wise PD symptom prediction, reactive PD alerts, and accurate early detection solutions. Considering effective medical data analysis with minimal response time, the proposed model creates reactive body sensor network. Under this sensor platform, sensor modules contain proposed DL procedures in its internal memory for initiating data analysis practices. Consequently, the symptoms of PD are commendably detected and predicted with minimal response time. The experimental results indicate the proposed PD system outperforms the existing systems with 8% to 10% of better results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3181985</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accelerometers ; Analytical models ; Biosensors ; Body area networks ; body sensors ; Cluster analysis ; Clustering ; Coders ; Data analysis ; Data models ; Data reduction ; Datasets ; Deep learning ; Drugs ; Machine learning ; Medical diagnostic imaging ; Medical research ; Microphones ; Monitoring ; neural networks ; Parkinson's disease ; PD~symptoms and healthcare ; Real time ; Real-time systems ; Regularization ; Response time ; Sensors ; Signs and symptoms ; Telemedicine ; Training ; Vector quantization</subject><ispartof>IEEE access, 2022, Vol.10, p.63403-63421</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2535-a58c74570217febe6a44a7f3d5873b8615a54e5a2b37cb785cd7478f985b803a3</citedby><cites>FETCH-LOGICAL-c2535-a58c74570217febe6a44a7f3d5873b8615a54e5a2b37cb785cd7478f985b803a3</cites><orcidid>0000-0002-0423-3405 ; 0000-0002-5338-1623 ; 0000-0003-2417-4374 ; 0000-0002-5736-9111 ; 0000-0002-3658-3514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9793690$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Soundararajan, Rajasoundaran</creatorcontrib><creatorcontrib>Prabu, A. V.</creatorcontrib><creatorcontrib>Routray, Sidheswar</creatorcontrib><creatorcontrib>Malla, Prince Priya</creatorcontrib><creatorcontrib>Ray, Arun Kumar</creatorcontrib><creatorcontrib>Palai, Gopinath</creatorcontrib><creatorcontrib>Faragallah, Osama S.</creatorcontrib><creatorcontrib>Baz, Mohammed</creatorcontrib><creatorcontrib>Abualnaja, Matokah M.</creatorcontrib><creatorcontrib>Eid, Mohamoud M. A.</creatorcontrib><creatorcontrib>Rashed, Ahmed Nabih Zaki</creatorcontrib><title>Deeply Trained Real-Time Body Sensor Networks for Analyzing the Symptoms of Parkinson's Disease</title><title>IEEE access</title><addtitle>Access</addtitle><description>Parkinson's Disease (PD) is a neural system disorder that disturbs the mental activities and physical activities of human beings. Analyzing the symptoms and biosignal data of PD is crucially focused in medical research fields. The existing PD diagnosis models are limited to real-time issues, insufficient deep data extraction, and early monitoring problems. On the scope, the proposed Optimal Health Support and PD Analysis System (OHPAS) analyses the symptoms of PD using a deeply trained biosensors network environment. The novel system trains the biosensor network using complex Machine Learning (ML) and Deep Learning (DL) approaches. The environment of OHPAS sets up acoustic sensors (UT-PF), microphones (MC-1500 unit), and multimodal sensor units (MC-10 sensor). MC-10 is the sensor suite that has an accelerometer sensor, gyro sensor, and Electro Cardio Gram (ECG) sensor to observe the biosignals. For establishing the biodata analysis framework, OHPAS initiates the fusion of Variable Auto Encoder (VAER) and K-Means clustering techniques. This phase comprises dataset feature reduction, data regularization, and clustering operations to make the dataset effective for the training process. Finally, the Long Short Term Memory network (LSTM) uses the preprocessed dataset for computing the training dataset. The proposed OHPAS contributes novel features such as a real-time patient monitoring environment, effective sensor data reduction, distributed sensor data analysis, day-wise PD symptom prediction, reactive PD alerts, and accurate early detection solutions. Considering effective medical data analysis with minimal response time, the proposed model creates reactive body sensor network. Under this sensor platform, sensor modules contain proposed DL procedures in its internal memory for initiating data analysis practices. Consequently, the symptoms of PD are commendably detected and predicted with minimal response time. The experimental results indicate the proposed PD system outperforms the existing systems with 8% to 10% of better results.</description><subject>Accelerometers</subject><subject>Analytical models</subject><subject>Biosensors</subject><subject>Body area networks</subject><subject>body sensors</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Coders</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Data reduction</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Drugs</subject><subject>Machine learning</subject><subject>Medical diagnostic imaging</subject><subject>Medical research</subject><subject>Microphones</subject><subject>Monitoring</subject><subject>neural networks</subject><subject>Parkinson's disease</subject><subject>PD~symptoms and healthcare</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Regularization</subject><subject>Response time</subject><subject>Sensors</subject><subject>Signs and symptoms</subject><subject>Telemedicine</subject><subject>Training</subject><subject>Vector quantization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu1DAQjRCVqEq_oBdLHDhl67Hj2D4u21IqVVCxy9lynHHxNhsvdioUvh6XVBVzmZmneW8086rqAugKgOrL9WZzvd2uGGVsxUGBVuJNdcqg1TUXvH37X_2uOs95T0uoAgl5WpkrxOMwk12yYcSefEc71LtwQPIp9jPZ4phjIl9x-h3TYya-NOvRDvOfMD6Q6SeS7Xw4TvGQSfTk3qbHUAjjx0yuQkab8X114u2Q8fwln1U_Pl_vNl_qu283t5v1Xe2Y4KK2QjnZCEkZSI8dtrZprPS8F0ryTrUgrGhQWNZx6TqphOtlI5Uvt3aKcsvPqttFt492b44pHGyaTbTB_ANiejA2TcENaAClA_BOegVNK6UCR5kun2w0UoC2aH1YtI4p_nrCPJl9fErl6mxYKzXXTAErU3yZcinmnNC_bgVqno0xizHm2RjzYkxhXSysgIivDF1UW035X-Wrh38</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Soundararajan, Rajasoundaran</creator><creator>Prabu, A. V.</creator><creator>Routray, Sidheswar</creator><creator>Malla, Prince Priya</creator><creator>Ray, Arun Kumar</creator><creator>Palai, Gopinath</creator><creator>Faragallah, Osama S.</creator><creator>Baz, Mohammed</creator><creator>Abualnaja, Matokah M.</creator><creator>Eid, Mohamoud M. A.</creator><creator>Rashed, Ahmed Nabih Zaki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0423-3405</orcidid><orcidid>https://orcid.org/0000-0002-5338-1623</orcidid><orcidid>https://orcid.org/0000-0003-2417-4374</orcidid><orcidid>https://orcid.org/0000-0002-5736-9111</orcidid><orcidid>https://orcid.org/0000-0002-3658-3514</orcidid></search><sort><creationdate>2022</creationdate><title>Deeply Trained Real-Time Body Sensor Networks for Analyzing the Symptoms of Parkinson's Disease</title><author>Soundararajan, Rajasoundaran ; Prabu, A. V. ; Routray, Sidheswar ; Malla, Prince Priya ; Ray, Arun Kumar ; Palai, Gopinath ; Faragallah, Osama S. ; Baz, Mohammed ; Abualnaja, Matokah M. ; Eid, Mohamoud M. A. ; Rashed, Ahmed Nabih Zaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2535-a58c74570217febe6a44a7f3d5873b8615a54e5a2b37cb785cd7478f985b803a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometers</topic><topic>Analytical models</topic><topic>Biosensors</topic><topic>Body area networks</topic><topic>body sensors</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Coders</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Data reduction</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Drugs</topic><topic>Machine learning</topic><topic>Medical diagnostic imaging</topic><topic>Medical research</topic><topic>Microphones</topic><topic>Monitoring</topic><topic>neural networks</topic><topic>Parkinson's disease</topic><topic>PD~symptoms and healthcare</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Regularization</topic><topic>Response time</topic><topic>Sensors</topic><topic>Signs and symptoms</topic><topic>Telemedicine</topic><topic>Training</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soundararajan, Rajasoundaran</creatorcontrib><creatorcontrib>Prabu, A. V.</creatorcontrib><creatorcontrib>Routray, Sidheswar</creatorcontrib><creatorcontrib>Malla, Prince Priya</creatorcontrib><creatorcontrib>Ray, Arun Kumar</creatorcontrib><creatorcontrib>Palai, Gopinath</creatorcontrib><creatorcontrib>Faragallah, Osama S.</creatorcontrib><creatorcontrib>Baz, Mohammed</creatorcontrib><creatorcontrib>Abualnaja, Matokah M.</creatorcontrib><creatorcontrib>Eid, Mohamoud M. A.</creatorcontrib><creatorcontrib>Rashed, Ahmed Nabih Zaki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soundararajan, Rajasoundaran</au><au>Prabu, A. V.</au><au>Routray, Sidheswar</au><au>Malla, Prince Priya</au><au>Ray, Arun Kumar</au><au>Palai, Gopinath</au><au>Faragallah, Osama S.</au><au>Baz, Mohammed</au><au>Abualnaja, Matokah M.</au><au>Eid, Mohamoud M. A.</au><au>Rashed, Ahmed Nabih Zaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deeply Trained Real-Time Body Sensor Networks for Analyzing the Symptoms of Parkinson's Disease</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>63403</spage><epage>63421</epage><pages>63403-63421</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Parkinson's Disease (PD) is a neural system disorder that disturbs the mental activities and physical activities of human beings. Analyzing the symptoms and biosignal data of PD is crucially focused in medical research fields. The existing PD diagnosis models are limited to real-time issues, insufficient deep data extraction, and early monitoring problems. On the scope, the proposed Optimal Health Support and PD Analysis System (OHPAS) analyses the symptoms of PD using a deeply trained biosensors network environment. The novel system trains the biosensor network using complex Machine Learning (ML) and Deep Learning (DL) approaches. The environment of OHPAS sets up acoustic sensors (UT-PF), microphones (MC-1500 unit), and multimodal sensor units (MC-10 sensor). MC-10 is the sensor suite that has an accelerometer sensor, gyro sensor, and Electro Cardio Gram (ECG) sensor to observe the biosignals. For establishing the biodata analysis framework, OHPAS initiates the fusion of Variable Auto Encoder (VAER) and K-Means clustering techniques. This phase comprises dataset feature reduction, data regularization, and clustering operations to make the dataset effective for the training process. Finally, the Long Short Term Memory network (LSTM) uses the preprocessed dataset for computing the training dataset. The proposed OHPAS contributes novel features such as a real-time patient monitoring environment, effective sensor data reduction, distributed sensor data analysis, day-wise PD symptom prediction, reactive PD alerts, and accurate early detection solutions. Considering effective medical data analysis with minimal response time, the proposed model creates reactive body sensor network. Under this sensor platform, sensor modules contain proposed DL procedures in its internal memory for initiating data analysis practices. Consequently, the symptoms of PD are commendably detected and predicted with minimal response time. The experimental results indicate the proposed PD system outperforms the existing systems with 8% to 10% of better results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3181985</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0423-3405</orcidid><orcidid>https://orcid.org/0000-0002-5338-1623</orcidid><orcidid>https://orcid.org/0000-0003-2417-4374</orcidid><orcidid>https://orcid.org/0000-0002-5736-9111</orcidid><orcidid>https://orcid.org/0000-0002-3658-3514</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.63403-63421
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3181985
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accelerometers
Analytical models
Biosensors
Body area networks
body sensors
Cluster analysis
Clustering
Coders
Data analysis
Data models
Data reduction
Datasets
Deep learning
Drugs
Machine learning
Medical diagnostic imaging
Medical research
Microphones
Monitoring
neural networks
Parkinson's disease
PD~symptoms and healthcare
Real time
Real-time systems
Regularization
Response time
Sensors
Signs and symptoms
Telemedicine
Training
Vector quantization
title Deeply Trained Real-Time Body Sensor Networks for Analyzing the Symptoms of Parkinson's Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deeply%20Trained%20Real-Time%20Body%20Sensor%20Networks%20for%20Analyzing%20the%20Symptoms%20of%20Parkinson's%20Disease&rft.jtitle=IEEE%20access&rft.au=Soundararajan,%20Rajasoundaran&rft.date=2022&rft.volume=10&rft.spage=63403&rft.epage=63421&rft.pages=63403-63421&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3181985&rft_dat=%3Cproquest_cross%3E2679392812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679392812&rft_id=info:pmid/&rft_ieee_id=9793690&rft_doaj_id=oai_doaj_org_article_1e7c11fc7f81467781c02910949e0116&rfr_iscdi=true