Forensic Analysis of Synthetically Generated Western Blot Images
The widespread diffusion of synthetically generated content is a serious threat that needs urgent countermeasures. As a matter of fact, the generation of synthetic content is not restricted to multimedia data like videos, photographs or audio sequences, but covers a significantly vast area that can...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.59919-59932 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59932 |
---|---|
container_issue | |
container_start_page | 59919 |
container_title | IEEE access |
container_volume | 10 |
creator | Mandelli, Sara Cozzolino, Davide Cannas, Edoardo D. Cardenuto, Joao P. Moreira, Daniel Bestagini, Paolo Scheirer, Walter J. Rocha, Anderson Verdoliva, Luisa Tubaro, Stefano Delp, Edward J. |
description | The widespread diffusion of synthetically generated content is a serious threat that needs urgent countermeasures. As a matter of fact, the generation of synthetic content is not restricted to multimedia data like videos, photographs or audio sequences, but covers a significantly vast area that can include biological images as well, such as western blot and microscopic images. In this paper, we focus on the detection of synthetically generated western blot images. These images are largely explored in the biomedical literature and it has been already shown they can be easily counterfeited with few hopes to spot manipulations by visual inspection or by using standard forensics detectors. To overcome the absence of publicly available data for this task, we create a new dataset comprising more than 14K original western blot images and 24K synthetic western blot images, generated using four different state-of-the-art generation methods. We investigate different strategies to detect synthetic western blots, exploring binary classification methods as well as one-class detectors. In both scenarios, we never exploit synthetic western blot images at training stage. The achieved results show that synthetically generated western blot images can be spot with good accuracy, even though the exploited detectors are not optimized over synthetic versions of these scientific images. We also test the robustness of the developed detectors against post-processing operations commonly performed on scientific images, showing that we can be robust to JPEG compression and that some generative models are easily recognizable, despite the application of editing might alter the artifacts they leave. |
doi_str_mv | 10.1109/ACCESS.2022.3179116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3179116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785655</ieee_id><doaj_id>oai_doaj_org_article_9a72697520d3445a94c3cbe2564011a8</doaj_id><sourcerecordid>2675044034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-252edc2fdd261ad0bc2ecdd06059f0f5b4b7ab0331f9b0be13d3c129d3c155fc3</originalsourceid><addsrcrecordid>eNpNUE1PwkAQ3RhNJMov4NLEc3G_272JBJCExAMaj5vt7hRLShd3y6H_3mIJcQ4zk8m8N_MeQhOCp4Rg9Tybzxfb7ZRiSqeMZIoQeYNGlEiVMsHk7b_-Ho1j3OM-8n4kshF6WfoATaxsMmtM3cUqJr5Mtl3TfkNbWVPXXbKCBoJpwSVfEFsITfJa-zZZH8wO4iO6K00dYXypD-hzufiYv6Wb99V6PtukluO8Tamg4CwtnaOSGIcLS8E6hyUWqsSlKHiRmQIzRkpV4AIIc8wSqs5ZiNKyB7QeeJ03e30M1cGETntT6b-BDzttQv9xDVqZjEqVCYod41wYxS2zBVAhOSbE5D3X08B1DP7n1GvSe38Kvf6oqcwE5hwz3m-xYcsGH2OA8nqVYH12Xg_O67Pz-uJ8j5oMqAoArgiV5UIKwX4BTyJ-GA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675044034</pqid></control><display><type>article</type><title>Forensic Analysis of Synthetically Generated Western Blot Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mandelli, Sara ; Cozzolino, Davide ; Cannas, Edoardo D. ; Cardenuto, Joao P. ; Moreira, Daniel ; Bestagini, Paolo ; Scheirer, Walter J. ; Rocha, Anderson ; Verdoliva, Luisa ; Tubaro, Stefano ; Delp, Edward J.</creator><creatorcontrib>Mandelli, Sara ; Cozzolino, Davide ; Cannas, Edoardo D. ; Cardenuto, Joao P. ; Moreira, Daniel ; Bestagini, Paolo ; Scheirer, Walter J. ; Rocha, Anderson ; Verdoliva, Luisa ; Tubaro, Stefano ; Delp, Edward J.</creatorcontrib><description>The widespread diffusion of synthetically generated content is a serious threat that needs urgent countermeasures. As a matter of fact, the generation of synthetic content is not restricted to multimedia data like videos, photographs or audio sequences, but covers a significantly vast area that can include biological images as well, such as western blot and microscopic images. In this paper, we focus on the detection of synthetically generated western blot images. These images are largely explored in the biomedical literature and it has been already shown they can be easily counterfeited with few hopes to spot manipulations by visual inspection or by using standard forensics detectors. To overcome the absence of publicly available data for this task, we create a new dataset comprising more than 14K original western blot images and 24K synthetic western blot images, generated using four different state-of-the-art generation methods. We investigate different strategies to detect synthetic western blots, exploring binary classification methods as well as one-class detectors. In both scenarios, we never exploit synthetic western blot images at training stage. The achieved results show that synthetically generated western blot images can be spot with good accuracy, even though the exploited detectors are not optimized over synthetic versions of these scientific images. We also test the robustness of the developed detectors against post-processing operations commonly performed on scientific images, showing that we can be robust to JPEG compression and that some generative models are easily recognizable, despite the application of editing might alter the artifacts they leave.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3179116</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Audio data ; Data models ; denoising diffusion probabilistic models ; Detectors ; Forensics ; GANs ; Generative adversarial networks ; Image compression ; image forensics ; Inspection ; Multimedia ; Probabilistic logic ; Robustness ; Sensors ; synthetically generated images ; Training ; Western blots</subject><ispartof>IEEE access, 2022, Vol.10, p.59919-59932</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-252edc2fdd261ad0bc2ecdd06059f0f5b4b7ab0331f9b0be13d3c129d3c155fc3</citedby><cites>FETCH-LOGICAL-c408t-252edc2fdd261ad0bc2ecdd06059f0f5b4b7ab0331f9b0be13d3c129d3c155fc3</cites><orcidid>0000-0002-1990-9869 ; 0000-0003-0406-0222 ; 0000-0001-6158-7595 ; 0000-0001-7286-7963 ; 0000-0002-8370-6329 ; 0000-0002-2011-7295 ; 0000-0001-9649-8074 ; 0000-0002-4236-8212 ; 0000-0003-3811-003X ; 0000-0002-2909-7323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785655$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Mandelli, Sara</creatorcontrib><creatorcontrib>Cozzolino, Davide</creatorcontrib><creatorcontrib>Cannas, Edoardo D.</creatorcontrib><creatorcontrib>Cardenuto, Joao P.</creatorcontrib><creatorcontrib>Moreira, Daniel</creatorcontrib><creatorcontrib>Bestagini, Paolo</creatorcontrib><creatorcontrib>Scheirer, Walter J.</creatorcontrib><creatorcontrib>Rocha, Anderson</creatorcontrib><creatorcontrib>Verdoliva, Luisa</creatorcontrib><creatorcontrib>Tubaro, Stefano</creatorcontrib><creatorcontrib>Delp, Edward J.</creatorcontrib><title>Forensic Analysis of Synthetically Generated Western Blot Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>The widespread diffusion of synthetically generated content is a serious threat that needs urgent countermeasures. As a matter of fact, the generation of synthetic content is not restricted to multimedia data like videos, photographs or audio sequences, but covers a significantly vast area that can include biological images as well, such as western blot and microscopic images. In this paper, we focus on the detection of synthetically generated western blot images. These images are largely explored in the biomedical literature and it has been already shown they can be easily counterfeited with few hopes to spot manipulations by visual inspection or by using standard forensics detectors. To overcome the absence of publicly available data for this task, we create a new dataset comprising more than 14K original western blot images and 24K synthetic western blot images, generated using four different state-of-the-art generation methods. We investigate different strategies to detect synthetic western blots, exploring binary classification methods as well as one-class detectors. In both scenarios, we never exploit synthetic western blot images at training stage. The achieved results show that synthetically generated western blot images can be spot with good accuracy, even though the exploited detectors are not optimized over synthetic versions of these scientific images. We also test the robustness of the developed detectors against post-processing operations commonly performed on scientific images, showing that we can be robust to JPEG compression and that some generative models are easily recognizable, despite the application of editing might alter the artifacts they leave.</description><subject>Audio data</subject><subject>Data models</subject><subject>denoising diffusion probabilistic models</subject><subject>Detectors</subject><subject>Forensics</subject><subject>GANs</subject><subject>Generative adversarial networks</subject><subject>Image compression</subject><subject>image forensics</subject><subject>Inspection</subject><subject>Multimedia</subject><subject>Probabilistic logic</subject><subject>Robustness</subject><subject>Sensors</subject><subject>synthetically generated images</subject><subject>Training</subject><subject>Western blots</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAQ3RhNJMov4NLEc3G_272JBJCExAMaj5vt7hRLShd3y6H_3mIJcQ4zk8m8N_MeQhOCp4Rg9Tybzxfb7ZRiSqeMZIoQeYNGlEiVMsHk7b_-Ho1j3OM-8n4kshF6WfoATaxsMmtM3cUqJr5Mtl3TfkNbWVPXXbKCBoJpwSVfEFsITfJa-zZZH8wO4iO6K00dYXypD-hzufiYv6Wb99V6PtukluO8Tamg4CwtnaOSGIcLS8E6hyUWqsSlKHiRmQIzRkpV4AIIc8wSqs5ZiNKyB7QeeJ03e30M1cGETntT6b-BDzttQv9xDVqZjEqVCYod41wYxS2zBVAhOSbE5D3X08B1DP7n1GvSe38Kvf6oqcwE5hwz3m-xYcsGH2OA8nqVYH12Xg_O67Pz-uJ8j5oMqAoArgiV5UIKwX4BTyJ-GA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Mandelli, Sara</creator><creator>Cozzolino, Davide</creator><creator>Cannas, Edoardo D.</creator><creator>Cardenuto, Joao P.</creator><creator>Moreira, Daniel</creator><creator>Bestagini, Paolo</creator><creator>Scheirer, Walter J.</creator><creator>Rocha, Anderson</creator><creator>Verdoliva, Luisa</creator><creator>Tubaro, Stefano</creator><creator>Delp, Edward J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1990-9869</orcidid><orcidid>https://orcid.org/0000-0003-0406-0222</orcidid><orcidid>https://orcid.org/0000-0001-6158-7595</orcidid><orcidid>https://orcid.org/0000-0001-7286-7963</orcidid><orcidid>https://orcid.org/0000-0002-8370-6329</orcidid><orcidid>https://orcid.org/0000-0002-2011-7295</orcidid><orcidid>https://orcid.org/0000-0001-9649-8074</orcidid><orcidid>https://orcid.org/0000-0002-4236-8212</orcidid><orcidid>https://orcid.org/0000-0003-3811-003X</orcidid><orcidid>https://orcid.org/0000-0002-2909-7323</orcidid></search><sort><creationdate>2022</creationdate><title>Forensic Analysis of Synthetically Generated Western Blot Images</title><author>Mandelli, Sara ; Cozzolino, Davide ; Cannas, Edoardo D. ; Cardenuto, Joao P. ; Moreira, Daniel ; Bestagini, Paolo ; Scheirer, Walter J. ; Rocha, Anderson ; Verdoliva, Luisa ; Tubaro, Stefano ; Delp, Edward J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-252edc2fdd261ad0bc2ecdd06059f0f5b4b7ab0331f9b0be13d3c129d3c155fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Audio data</topic><topic>Data models</topic><topic>denoising diffusion probabilistic models</topic><topic>Detectors</topic><topic>Forensics</topic><topic>GANs</topic><topic>Generative adversarial networks</topic><topic>Image compression</topic><topic>image forensics</topic><topic>Inspection</topic><topic>Multimedia</topic><topic>Probabilistic logic</topic><topic>Robustness</topic><topic>Sensors</topic><topic>synthetically generated images</topic><topic>Training</topic><topic>Western blots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandelli, Sara</creatorcontrib><creatorcontrib>Cozzolino, Davide</creatorcontrib><creatorcontrib>Cannas, Edoardo D.</creatorcontrib><creatorcontrib>Cardenuto, Joao P.</creatorcontrib><creatorcontrib>Moreira, Daniel</creatorcontrib><creatorcontrib>Bestagini, Paolo</creatorcontrib><creatorcontrib>Scheirer, Walter J.</creatorcontrib><creatorcontrib>Rocha, Anderson</creatorcontrib><creatorcontrib>Verdoliva, Luisa</creatorcontrib><creatorcontrib>Tubaro, Stefano</creatorcontrib><creatorcontrib>Delp, Edward J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandelli, Sara</au><au>Cozzolino, Davide</au><au>Cannas, Edoardo D.</au><au>Cardenuto, Joao P.</au><au>Moreira, Daniel</au><au>Bestagini, Paolo</au><au>Scheirer, Walter J.</au><au>Rocha, Anderson</au><au>Verdoliva, Luisa</au><au>Tubaro, Stefano</au><au>Delp, Edward J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forensic Analysis of Synthetically Generated Western Blot Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>59919</spage><epage>59932</epage><pages>59919-59932</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The widespread diffusion of synthetically generated content is a serious threat that needs urgent countermeasures. As a matter of fact, the generation of synthetic content is not restricted to multimedia data like videos, photographs or audio sequences, but covers a significantly vast area that can include biological images as well, such as western blot and microscopic images. In this paper, we focus on the detection of synthetically generated western blot images. These images are largely explored in the biomedical literature and it has been already shown they can be easily counterfeited with few hopes to spot manipulations by visual inspection or by using standard forensics detectors. To overcome the absence of publicly available data for this task, we create a new dataset comprising more than 14K original western blot images and 24K synthetic western blot images, generated using four different state-of-the-art generation methods. We investigate different strategies to detect synthetic western blots, exploring binary classification methods as well as one-class detectors. In both scenarios, we never exploit synthetic western blot images at training stage. The achieved results show that synthetically generated western blot images can be spot with good accuracy, even though the exploited detectors are not optimized over synthetic versions of these scientific images. We also test the robustness of the developed detectors against post-processing operations commonly performed on scientific images, showing that we can be robust to JPEG compression and that some generative models are easily recognizable, despite the application of editing might alter the artifacts they leave.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3179116</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1990-9869</orcidid><orcidid>https://orcid.org/0000-0003-0406-0222</orcidid><orcidid>https://orcid.org/0000-0001-6158-7595</orcidid><orcidid>https://orcid.org/0000-0001-7286-7963</orcidid><orcidid>https://orcid.org/0000-0002-8370-6329</orcidid><orcidid>https://orcid.org/0000-0002-2011-7295</orcidid><orcidid>https://orcid.org/0000-0001-9649-8074</orcidid><orcidid>https://orcid.org/0000-0002-4236-8212</orcidid><orcidid>https://orcid.org/0000-0003-3811-003X</orcidid><orcidid>https://orcid.org/0000-0002-2909-7323</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.59919-59932 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3179116 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Audio data Data models denoising diffusion probabilistic models Detectors Forensics GANs Generative adversarial networks Image compression image forensics Inspection Multimedia Probabilistic logic Robustness Sensors synthetically generated images Training Western blots |
title | Forensic Analysis of Synthetically Generated Western Blot Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forensic%20Analysis%20of%20Synthetically%20Generated%20Western%20Blot%20Images&rft.jtitle=IEEE%20access&rft.au=Mandelli,%20Sara&rft.date=2022&rft.volume=10&rft.spage=59919&rft.epage=59932&rft.pages=59919-59932&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3179116&rft_dat=%3Cproquest_cross%3E2675044034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675044034&rft_id=info:pmid/&rft_ieee_id=9785655&rft_doaj_id=oai_doaj_org_article_9a72697520d3445a94c3cbe2564011a8&rfr_iscdi=true |