Forensic Analysis of Synthetically Generated Western Blot Images

The widespread diffusion of synthetically generated content is a serious threat that needs urgent countermeasures. As a matter of fact, the generation of synthetic content is not restricted to multimedia data like videos, photographs or audio sequences, but covers a significantly vast area that can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.59919-59932
Hauptverfasser: Mandelli, Sara, Cozzolino, Davide, Cannas, Edoardo D., Cardenuto, Joao P., Moreira, Daniel, Bestagini, Paolo, Scheirer, Walter J., Rocha, Anderson, Verdoliva, Luisa, Tubaro, Stefano, Delp, Edward J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59932
container_issue
container_start_page 59919
container_title IEEE access
container_volume 10
creator Mandelli, Sara
Cozzolino, Davide
Cannas, Edoardo D.
Cardenuto, Joao P.
Moreira, Daniel
Bestagini, Paolo
Scheirer, Walter J.
Rocha, Anderson
Verdoliva, Luisa
Tubaro, Stefano
Delp, Edward J.
description The widespread diffusion of synthetically generated content is a serious threat that needs urgent countermeasures. As a matter of fact, the generation of synthetic content is not restricted to multimedia data like videos, photographs or audio sequences, but covers a significantly vast area that can include biological images as well, such as western blot and microscopic images. In this paper, we focus on the detection of synthetically generated western blot images. These images are largely explored in the biomedical literature and it has been already shown they can be easily counterfeited with few hopes to spot manipulations by visual inspection or by using standard forensics detectors. To overcome the absence of publicly available data for this task, we create a new dataset comprising more than 14K original western blot images and 24K synthetic western blot images, generated using four different state-of-the-art generation methods. We investigate different strategies to detect synthetic western blots, exploring binary classification methods as well as one-class detectors. In both scenarios, we never exploit synthetic western blot images at training stage. The achieved results show that synthetically generated western blot images can be spot with good accuracy, even though the exploited detectors are not optimized over synthetic versions of these scientific images. We also test the robustness of the developed detectors against post-processing operations commonly performed on scientific images, showing that we can be robust to JPEG compression and that some generative models are easily recognizable, despite the application of editing might alter the artifacts they leave.
doi_str_mv 10.1109/ACCESS.2022.3179116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3179116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785655</ieee_id><doaj_id>oai_doaj_org_article_9a72697520d3445a94c3cbe2564011a8</doaj_id><sourcerecordid>2675044034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-252edc2fdd261ad0bc2ecdd06059f0f5b4b7ab0331f9b0be13d3c129d3c155fc3</originalsourceid><addsrcrecordid>eNpNUE1PwkAQ3RhNJMov4NLEc3G_272JBJCExAMaj5vt7hRLShd3y6H_3mIJcQ4zk8m8N_MeQhOCp4Rg9Tybzxfb7ZRiSqeMZIoQeYNGlEiVMsHk7b_-Ho1j3OM-8n4kshF6WfoATaxsMmtM3cUqJr5Mtl3TfkNbWVPXXbKCBoJpwSVfEFsITfJa-zZZH8wO4iO6K00dYXypD-hzufiYv6Wb99V6PtukluO8Tamg4CwtnaOSGIcLS8E6hyUWqsSlKHiRmQIzRkpV4AIIc8wSqs5ZiNKyB7QeeJ03e30M1cGETntT6b-BDzttQv9xDVqZjEqVCYod41wYxS2zBVAhOSbE5D3X08B1DP7n1GvSe38Kvf6oqcwE5hwz3m-xYcsGH2OA8nqVYH12Xg_O67Pz-uJ8j5oMqAoArgiV5UIKwX4BTyJ-GA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675044034</pqid></control><display><type>article</type><title>Forensic Analysis of Synthetically Generated Western Blot Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mandelli, Sara ; Cozzolino, Davide ; Cannas, Edoardo D. ; Cardenuto, Joao P. ; Moreira, Daniel ; Bestagini, Paolo ; Scheirer, Walter J. ; Rocha, Anderson ; Verdoliva, Luisa ; Tubaro, Stefano ; Delp, Edward J.</creator><creatorcontrib>Mandelli, Sara ; Cozzolino, Davide ; Cannas, Edoardo D. ; Cardenuto, Joao P. ; Moreira, Daniel ; Bestagini, Paolo ; Scheirer, Walter J. ; Rocha, Anderson ; Verdoliva, Luisa ; Tubaro, Stefano ; Delp, Edward J.</creatorcontrib><description>The widespread diffusion of synthetically generated content is a serious threat that needs urgent countermeasures. As a matter of fact, the generation of synthetic content is not restricted to multimedia data like videos, photographs or audio sequences, but covers a significantly vast area that can include biological images as well, such as western blot and microscopic images. In this paper, we focus on the detection of synthetically generated western blot images. These images are largely explored in the biomedical literature and it has been already shown they can be easily counterfeited with few hopes to spot manipulations by visual inspection or by using standard forensics detectors. To overcome the absence of publicly available data for this task, we create a new dataset comprising more than 14K original western blot images and 24K synthetic western blot images, generated using four different state-of-the-art generation methods. We investigate different strategies to detect synthetic western blots, exploring binary classification methods as well as one-class detectors. In both scenarios, we never exploit synthetic western blot images at training stage. The achieved results show that synthetically generated western blot images can be spot with good accuracy, even though the exploited detectors are not optimized over synthetic versions of these scientific images. We also test the robustness of the developed detectors against post-processing operations commonly performed on scientific images, showing that we can be robust to JPEG compression and that some generative models are easily recognizable, despite the application of editing might alter the artifacts they leave.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3179116</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Audio data ; Data models ; denoising diffusion probabilistic models ; Detectors ; Forensics ; GANs ; Generative adversarial networks ; Image compression ; image forensics ; Inspection ; Multimedia ; Probabilistic logic ; Robustness ; Sensors ; synthetically generated images ; Training ; Western blots</subject><ispartof>IEEE access, 2022, Vol.10, p.59919-59932</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-252edc2fdd261ad0bc2ecdd06059f0f5b4b7ab0331f9b0be13d3c129d3c155fc3</citedby><cites>FETCH-LOGICAL-c408t-252edc2fdd261ad0bc2ecdd06059f0f5b4b7ab0331f9b0be13d3c129d3c155fc3</cites><orcidid>0000-0002-1990-9869 ; 0000-0003-0406-0222 ; 0000-0001-6158-7595 ; 0000-0001-7286-7963 ; 0000-0002-8370-6329 ; 0000-0002-2011-7295 ; 0000-0001-9649-8074 ; 0000-0002-4236-8212 ; 0000-0003-3811-003X ; 0000-0002-2909-7323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785655$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Mandelli, Sara</creatorcontrib><creatorcontrib>Cozzolino, Davide</creatorcontrib><creatorcontrib>Cannas, Edoardo D.</creatorcontrib><creatorcontrib>Cardenuto, Joao P.</creatorcontrib><creatorcontrib>Moreira, Daniel</creatorcontrib><creatorcontrib>Bestagini, Paolo</creatorcontrib><creatorcontrib>Scheirer, Walter J.</creatorcontrib><creatorcontrib>Rocha, Anderson</creatorcontrib><creatorcontrib>Verdoliva, Luisa</creatorcontrib><creatorcontrib>Tubaro, Stefano</creatorcontrib><creatorcontrib>Delp, Edward J.</creatorcontrib><title>Forensic Analysis of Synthetically Generated Western Blot Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>The widespread diffusion of synthetically generated content is a serious threat that needs urgent countermeasures. As a matter of fact, the generation of synthetic content is not restricted to multimedia data like videos, photographs or audio sequences, but covers a significantly vast area that can include biological images as well, such as western blot and microscopic images. In this paper, we focus on the detection of synthetically generated western blot images. These images are largely explored in the biomedical literature and it has been already shown they can be easily counterfeited with few hopes to spot manipulations by visual inspection or by using standard forensics detectors. To overcome the absence of publicly available data for this task, we create a new dataset comprising more than 14K original western blot images and 24K synthetic western blot images, generated using four different state-of-the-art generation methods. We investigate different strategies to detect synthetic western blots, exploring binary classification methods as well as one-class detectors. In both scenarios, we never exploit synthetic western blot images at training stage. The achieved results show that synthetically generated western blot images can be spot with good accuracy, even though the exploited detectors are not optimized over synthetic versions of these scientific images. We also test the robustness of the developed detectors against post-processing operations commonly performed on scientific images, showing that we can be robust to JPEG compression and that some generative models are easily recognizable, despite the application of editing might alter the artifacts they leave.</description><subject>Audio data</subject><subject>Data models</subject><subject>denoising diffusion probabilistic models</subject><subject>Detectors</subject><subject>Forensics</subject><subject>GANs</subject><subject>Generative adversarial networks</subject><subject>Image compression</subject><subject>image forensics</subject><subject>Inspection</subject><subject>Multimedia</subject><subject>Probabilistic logic</subject><subject>Robustness</subject><subject>Sensors</subject><subject>synthetically generated images</subject><subject>Training</subject><subject>Western blots</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAQ3RhNJMov4NLEc3G_272JBJCExAMaj5vt7hRLShd3y6H_3mIJcQ4zk8m8N_MeQhOCp4Rg9Tybzxfb7ZRiSqeMZIoQeYNGlEiVMsHk7b_-Ho1j3OM-8n4kshF6WfoATaxsMmtM3cUqJr5Mtl3TfkNbWVPXXbKCBoJpwSVfEFsITfJa-zZZH8wO4iO6K00dYXypD-hzufiYv6Wb99V6PtukluO8Tamg4CwtnaOSGIcLS8E6hyUWqsSlKHiRmQIzRkpV4AIIc8wSqs5ZiNKyB7QeeJ03e30M1cGETntT6b-BDzttQv9xDVqZjEqVCYod41wYxS2zBVAhOSbE5D3X08B1DP7n1GvSe38Kvf6oqcwE5hwz3m-xYcsGH2OA8nqVYH12Xg_O67Pz-uJ8j5oMqAoArgiV5UIKwX4BTyJ-GA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Mandelli, Sara</creator><creator>Cozzolino, Davide</creator><creator>Cannas, Edoardo D.</creator><creator>Cardenuto, Joao P.</creator><creator>Moreira, Daniel</creator><creator>Bestagini, Paolo</creator><creator>Scheirer, Walter J.</creator><creator>Rocha, Anderson</creator><creator>Verdoliva, Luisa</creator><creator>Tubaro, Stefano</creator><creator>Delp, Edward J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1990-9869</orcidid><orcidid>https://orcid.org/0000-0003-0406-0222</orcidid><orcidid>https://orcid.org/0000-0001-6158-7595</orcidid><orcidid>https://orcid.org/0000-0001-7286-7963</orcidid><orcidid>https://orcid.org/0000-0002-8370-6329</orcidid><orcidid>https://orcid.org/0000-0002-2011-7295</orcidid><orcidid>https://orcid.org/0000-0001-9649-8074</orcidid><orcidid>https://orcid.org/0000-0002-4236-8212</orcidid><orcidid>https://orcid.org/0000-0003-3811-003X</orcidid><orcidid>https://orcid.org/0000-0002-2909-7323</orcidid></search><sort><creationdate>2022</creationdate><title>Forensic Analysis of Synthetically Generated Western Blot Images</title><author>Mandelli, Sara ; Cozzolino, Davide ; Cannas, Edoardo D. ; Cardenuto, Joao P. ; Moreira, Daniel ; Bestagini, Paolo ; Scheirer, Walter J. ; Rocha, Anderson ; Verdoliva, Luisa ; Tubaro, Stefano ; Delp, Edward J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-252edc2fdd261ad0bc2ecdd06059f0f5b4b7ab0331f9b0be13d3c129d3c155fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Audio data</topic><topic>Data models</topic><topic>denoising diffusion probabilistic models</topic><topic>Detectors</topic><topic>Forensics</topic><topic>GANs</topic><topic>Generative adversarial networks</topic><topic>Image compression</topic><topic>image forensics</topic><topic>Inspection</topic><topic>Multimedia</topic><topic>Probabilistic logic</topic><topic>Robustness</topic><topic>Sensors</topic><topic>synthetically generated images</topic><topic>Training</topic><topic>Western blots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandelli, Sara</creatorcontrib><creatorcontrib>Cozzolino, Davide</creatorcontrib><creatorcontrib>Cannas, Edoardo D.</creatorcontrib><creatorcontrib>Cardenuto, Joao P.</creatorcontrib><creatorcontrib>Moreira, Daniel</creatorcontrib><creatorcontrib>Bestagini, Paolo</creatorcontrib><creatorcontrib>Scheirer, Walter J.</creatorcontrib><creatorcontrib>Rocha, Anderson</creatorcontrib><creatorcontrib>Verdoliva, Luisa</creatorcontrib><creatorcontrib>Tubaro, Stefano</creatorcontrib><creatorcontrib>Delp, Edward J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandelli, Sara</au><au>Cozzolino, Davide</au><au>Cannas, Edoardo D.</au><au>Cardenuto, Joao P.</au><au>Moreira, Daniel</au><au>Bestagini, Paolo</au><au>Scheirer, Walter J.</au><au>Rocha, Anderson</au><au>Verdoliva, Luisa</au><au>Tubaro, Stefano</au><au>Delp, Edward J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forensic Analysis of Synthetically Generated Western Blot Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>59919</spage><epage>59932</epage><pages>59919-59932</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The widespread diffusion of synthetically generated content is a serious threat that needs urgent countermeasures. As a matter of fact, the generation of synthetic content is not restricted to multimedia data like videos, photographs or audio sequences, but covers a significantly vast area that can include biological images as well, such as western blot and microscopic images. In this paper, we focus on the detection of synthetically generated western blot images. These images are largely explored in the biomedical literature and it has been already shown they can be easily counterfeited with few hopes to spot manipulations by visual inspection or by using standard forensics detectors. To overcome the absence of publicly available data for this task, we create a new dataset comprising more than 14K original western blot images and 24K synthetic western blot images, generated using four different state-of-the-art generation methods. We investigate different strategies to detect synthetic western blots, exploring binary classification methods as well as one-class detectors. In both scenarios, we never exploit synthetic western blot images at training stage. The achieved results show that synthetically generated western blot images can be spot with good accuracy, even though the exploited detectors are not optimized over synthetic versions of these scientific images. We also test the robustness of the developed detectors against post-processing operations commonly performed on scientific images, showing that we can be robust to JPEG compression and that some generative models are easily recognizable, despite the application of editing might alter the artifacts they leave.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3179116</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1990-9869</orcidid><orcidid>https://orcid.org/0000-0003-0406-0222</orcidid><orcidid>https://orcid.org/0000-0001-6158-7595</orcidid><orcidid>https://orcid.org/0000-0001-7286-7963</orcidid><orcidid>https://orcid.org/0000-0002-8370-6329</orcidid><orcidid>https://orcid.org/0000-0002-2011-7295</orcidid><orcidid>https://orcid.org/0000-0001-9649-8074</orcidid><orcidid>https://orcid.org/0000-0002-4236-8212</orcidid><orcidid>https://orcid.org/0000-0003-3811-003X</orcidid><orcidid>https://orcid.org/0000-0002-2909-7323</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.59919-59932
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3179116
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Audio data
Data models
denoising diffusion probabilistic models
Detectors
Forensics
GANs
Generative adversarial networks
Image compression
image forensics
Inspection
Multimedia
Probabilistic logic
Robustness
Sensors
synthetically generated images
Training
Western blots
title Forensic Analysis of Synthetically Generated Western Blot Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forensic%20Analysis%20of%20Synthetically%20Generated%20Western%20Blot%20Images&rft.jtitle=IEEE%20access&rft.au=Mandelli,%20Sara&rft.date=2022&rft.volume=10&rft.spage=59919&rft.epage=59932&rft.pages=59919-59932&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3179116&rft_dat=%3Cproquest_cross%3E2675044034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675044034&rft_id=info:pmid/&rft_ieee_id=9785655&rft_doaj_id=oai_doaj_org_article_9a72697520d3445a94c3cbe2564011a8&rfr_iscdi=true