A V-Band Integrated Receiver Front-End Based on 0.15 μm GaAs pHEMT Process for Passive Millimeter-Wave Imaging
The design, analysis, implementation and measurement of an integrated V-band receiver front-end based on 0.15~\mu \text{m} GaAs pHEMT process are presented in this paper. The front-end chip uses the super-heterodyne topology which consists of a low noise amplifier, an image reject mixer, and a mul...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.59933-59941 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59941 |
---|---|
container_issue | |
container_start_page | 59933 |
container_title | IEEE access |
container_volume | 10 |
creator | Gong, Jianhao Chen, Xi He, Wangdong Altaf, Amjad Hu, Anyong Miao, Jungang |
description | The design, analysis, implementation and measurement of an integrated V-band receiver front-end based on 0.15~\mu \text{m} GaAs pHEMT process are presented in this paper. The front-end chip uses the super-heterodyne topology which consists of a low noise amplifier, an image reject mixer, and a multiply-by-four ( \times 4 ) LO chain. In order to minimize the power consumed by LO chain, an active single-ended mixer is designed which requires extremely low LO power of −5 dBm. Meanwhile, the effect of signal coupling in the integrated chip is analyzed and solutions are proposed. By introducing appropriate filters into the circuit and optimizing the overall layout, the imbalance of in-phase and quadrature signals caused by unwanted coupling can be effectively mitigated, thus enhancing the image rejection of the chip. Probe and module tests are applied to the receiver front-end, and the measurement results reveal that the chip achieves −3 ± 0.7 dB conversion gain, 7 dB noise figure and more than 25 dB image rejection ratio in the RF frequency range of 52-56 GHz. Only one supply voltage of 3 V is required for the chip, and total power consumption is 312 mW. Moreover, with a continuously adjustable phase control of 360° and very broadband IF characteristics, the front-end chip is very suitable for passive millimeter-wave imaging application. |
doi_str_mv | 10.1109/ACCESS.2022.3175367 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3175367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9782146</ieee_id><doaj_id>oai_doaj_org_article_4634f3015eb74c78b97c25465998cec4</doaj_id><sourcerecordid>2675044499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2537-58998571c1003a800acd160920dd7b396d058e6da31685f2da658fcab42720de3</originalsourceid><addsrcrecordid>eNpNUdtOGzEQXVWtVET5Al4s8byp75fHEAWIBCoC2j5aE3s22ihZB3up1H_jG_immi5C-GU8M-ecOdJpmlNGZ4xR932-WCzv72eccj4TzCihzafmiDPtWlGbzx_-X5uTUra0PltHyhw1aU5-tecwRLIaRtxkGDGSOwzY_8FMLnIaxnZZt-dQ6iINpB5V5OV5Ty5hXsjhannzQG5zClgK6VImt1BK5ZKbfrfr9zhibn9D7Vd72PTD5lvzpYNdwZO3etz8vFg-LK7a6x-Xq8X8ug1cCdMq65xVhgVGqQBLKYTINHWcxmjWwulIlUUdQTBtVccjaGW7AGvJTcWgOG5Wk25MsPWH3O8h__UJev9_kPLGQx77sEMvtZCdoEzh2shg7NqZakJqVS0EDLJqnU1ah5wen7CMfpue8lDte66NolJK5ypKTKiQUykZu_erjPrXoPwUlH8Nyr8FVVmnE6tHxHeGM5az6usf9RaLfQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675044499</pqid></control><display><type>article</type><title>A V-Band Integrated Receiver Front-End Based on 0.15 μm GaAs pHEMT Process for Passive Millimeter-Wave Imaging</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gong, Jianhao ; Chen, Xi ; He, Wangdong ; Altaf, Amjad ; Hu, Anyong ; Miao, Jungang</creator><creatorcontrib>Gong, Jianhao ; Chen, Xi ; He, Wangdong ; Altaf, Amjad ; Hu, Anyong ; Miao, Jungang</creatorcontrib><description><![CDATA[The design, analysis, implementation and measurement of an integrated V-band receiver front-end based on <inline-formula> <tex-math notation="LaTeX">0.15~\mu \text{m} </tex-math></inline-formula> GaAs pHEMT process are presented in this paper. The front-end chip uses the super-heterodyne topology which consists of a low noise amplifier, an image reject mixer, and a multiply-by-four (<inline-formula> <tex-math notation="LaTeX">\times 4 </tex-math></inline-formula>) LO chain. In order to minimize the power consumed by LO chain, an active single-ended mixer is designed which requires extremely low LO power of −5 dBm. Meanwhile, the effect of signal coupling in the integrated chip is analyzed and solutions are proposed. By introducing appropriate filters into the circuit and optimizing the overall layout, the imbalance of in-phase and quadrature signals caused by unwanted coupling can be effectively mitigated, thus enhancing the image rejection of the chip. Probe and module tests are applied to the receiver front-end, and the measurement results reveal that the chip achieves −3 ± 0.7 dB conversion gain, 7 dB noise figure and more than 25 dB image rejection ratio in the RF frequency range of 52-56 GHz. Only one supply voltage of 3 V is required for the chip, and total power consumption is 312 mW. Moreover, with a continuously adjustable phase control of 360° and very broadband IF characteristics, the front-end chip is very suitable for passive millimeter-wave imaging application.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3175367</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>015 <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">μ m GaAs pHEMT ; Broadband ; Chains ; Circuits ; Coupling ; Couplings ; Frequency ranges ; Gain ; Gallium arsenide ; high image rejection ; Image enhancement ; Integrated receiver front-end ; low LO power ; Low noise ; Millimeter waves ; Mixers ; Noise levels ; Passive imaging ; Passive millimeter wave imaging ; Phase control ; PHEMTs ; Power consumption ; Quadratures ; Radio frequency ; Receivers ; Rejection ; Topology ; V-band</subject><ispartof>IEEE access, 2022, Vol.10, p.59933-59941</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2537-58998571c1003a800acd160920dd7b396d058e6da31685f2da658fcab42720de3</citedby><cites>FETCH-LOGICAL-c2537-58998571c1003a800acd160920dd7b396d058e6da31685f2da658fcab42720de3</cites><orcidid>0000-0002-9567-474X ; 0000-0002-8772-7602 ; 0000-0002-9000-7534 ; 0000-0003-0204-9185 ; 0000-0003-0006-7590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9782146$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27635,27925,27926,27927,54935</link.rule.ids></links><search><creatorcontrib>Gong, Jianhao</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>He, Wangdong</creatorcontrib><creatorcontrib>Altaf, Amjad</creatorcontrib><creatorcontrib>Hu, Anyong</creatorcontrib><creatorcontrib>Miao, Jungang</creatorcontrib><title>A V-Band Integrated Receiver Front-End Based on 0.15 μm GaAs pHEMT Process for Passive Millimeter-Wave Imaging</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[The design, analysis, implementation and measurement of an integrated V-band receiver front-end based on <inline-formula> <tex-math notation="LaTeX">0.15~\mu \text{m} </tex-math></inline-formula> GaAs pHEMT process are presented in this paper. The front-end chip uses the super-heterodyne topology which consists of a low noise amplifier, an image reject mixer, and a multiply-by-four (<inline-formula> <tex-math notation="LaTeX">\times 4 </tex-math></inline-formula>) LO chain. In order to minimize the power consumed by LO chain, an active single-ended mixer is designed which requires extremely low LO power of −5 dBm. Meanwhile, the effect of signal coupling in the integrated chip is analyzed and solutions are proposed. By introducing appropriate filters into the circuit and optimizing the overall layout, the imbalance of in-phase and quadrature signals caused by unwanted coupling can be effectively mitigated, thus enhancing the image rejection of the chip. Probe and module tests are applied to the receiver front-end, and the measurement results reveal that the chip achieves −3 ± 0.7 dB conversion gain, 7 dB noise figure and more than 25 dB image rejection ratio in the RF frequency range of 52-56 GHz. Only one supply voltage of 3 V is required for the chip, and total power consumption is 312 mW. Moreover, with a continuously adjustable phase control of 360° and very broadband IF characteristics, the front-end chip is very suitable for passive millimeter-wave imaging application.]]></description><subject>015 <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">μ m GaAs pHEMT</subject><subject>Broadband</subject><subject>Chains</subject><subject>Circuits</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Frequency ranges</subject><subject>Gain</subject><subject>Gallium arsenide</subject><subject>high image rejection</subject><subject>Image enhancement</subject><subject>Integrated receiver front-end</subject><subject>low LO power</subject><subject>Low noise</subject><subject>Millimeter waves</subject><subject>Mixers</subject><subject>Noise levels</subject><subject>Passive imaging</subject><subject>Passive millimeter wave imaging</subject><subject>Phase control</subject><subject>PHEMTs</subject><subject>Power consumption</subject><subject>Quadratures</subject><subject>Radio frequency</subject><subject>Receivers</subject><subject>Rejection</subject><subject>Topology</subject><subject>V-band</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtOGzEQXVWtVET5Al4s8byp75fHEAWIBCoC2j5aE3s22ihZB3up1H_jG_immi5C-GU8M-ecOdJpmlNGZ4xR932-WCzv72eccj4TzCihzafmiDPtWlGbzx_-X5uTUra0PltHyhw1aU5-tecwRLIaRtxkGDGSOwzY_8FMLnIaxnZZt-dQ6iINpB5V5OV5Ty5hXsjhannzQG5zClgK6VImt1BK5ZKbfrfr9zhibn9D7Vd72PTD5lvzpYNdwZO3etz8vFg-LK7a6x-Xq8X8ug1cCdMq65xVhgVGqQBLKYTINHWcxmjWwulIlUUdQTBtVccjaGW7AGvJTcWgOG5Wk25MsPWH3O8h__UJev9_kPLGQx77sEMvtZCdoEzh2shg7NqZakJqVS0EDLJqnU1ah5wen7CMfpue8lDte66NolJK5ypKTKiQUykZu_erjPrXoPwUlH8Nyr8FVVmnE6tHxHeGM5az6usf9RaLfQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Gong, Jianhao</creator><creator>Chen, Xi</creator><creator>He, Wangdong</creator><creator>Altaf, Amjad</creator><creator>Hu, Anyong</creator><creator>Miao, Jungang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9567-474X</orcidid><orcidid>https://orcid.org/0000-0002-8772-7602</orcidid><orcidid>https://orcid.org/0000-0002-9000-7534</orcidid><orcidid>https://orcid.org/0000-0003-0204-9185</orcidid><orcidid>https://orcid.org/0000-0003-0006-7590</orcidid></search><sort><creationdate>2022</creationdate><title>A V-Band Integrated Receiver Front-End Based on 0.15 μm GaAs pHEMT Process for Passive Millimeter-Wave Imaging</title><author>Gong, Jianhao ; Chen, Xi ; He, Wangdong ; Altaf, Amjad ; Hu, Anyong ; Miao, Jungang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2537-58998571c1003a800acd160920dd7b396d058e6da31685f2da658fcab42720de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>015 <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">μ m GaAs pHEMT</topic><topic>Broadband</topic><topic>Chains</topic><topic>Circuits</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Frequency ranges</topic><topic>Gain</topic><topic>Gallium arsenide</topic><topic>high image rejection</topic><topic>Image enhancement</topic><topic>Integrated receiver front-end</topic><topic>low LO power</topic><topic>Low noise</topic><topic>Millimeter waves</topic><topic>Mixers</topic><topic>Noise levels</topic><topic>Passive imaging</topic><topic>Passive millimeter wave imaging</topic><topic>Phase control</topic><topic>PHEMTs</topic><topic>Power consumption</topic><topic>Quadratures</topic><topic>Radio frequency</topic><topic>Receivers</topic><topic>Rejection</topic><topic>Topology</topic><topic>V-band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Jianhao</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>He, Wangdong</creatorcontrib><creatorcontrib>Altaf, Amjad</creatorcontrib><creatorcontrib>Hu, Anyong</creatorcontrib><creatorcontrib>Miao, Jungang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Jianhao</au><au>Chen, Xi</au><au>He, Wangdong</au><au>Altaf, Amjad</au><au>Hu, Anyong</au><au>Miao, Jungang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A V-Band Integrated Receiver Front-End Based on 0.15 μm GaAs pHEMT Process for Passive Millimeter-Wave Imaging</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>59933</spage><epage>59941</epage><pages>59933-59941</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[The design, analysis, implementation and measurement of an integrated V-band receiver front-end based on <inline-formula> <tex-math notation="LaTeX">0.15~\mu \text{m} </tex-math></inline-formula> GaAs pHEMT process are presented in this paper. The front-end chip uses the super-heterodyne topology which consists of a low noise amplifier, an image reject mixer, and a multiply-by-four (<inline-formula> <tex-math notation="LaTeX">\times 4 </tex-math></inline-formula>) LO chain. In order to minimize the power consumed by LO chain, an active single-ended mixer is designed which requires extremely low LO power of −5 dBm. Meanwhile, the effect of signal coupling in the integrated chip is analyzed and solutions are proposed. By introducing appropriate filters into the circuit and optimizing the overall layout, the imbalance of in-phase and quadrature signals caused by unwanted coupling can be effectively mitigated, thus enhancing the image rejection of the chip. Probe and module tests are applied to the receiver front-end, and the measurement results reveal that the chip achieves −3 ± 0.7 dB conversion gain, 7 dB noise figure and more than 25 dB image rejection ratio in the RF frequency range of 52-56 GHz. Only one supply voltage of 3 V is required for the chip, and total power consumption is 312 mW. Moreover, with a continuously adjustable phase control of 360° and very broadband IF characteristics, the front-end chip is very suitable for passive millimeter-wave imaging application.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3175367</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9567-474X</orcidid><orcidid>https://orcid.org/0000-0002-8772-7602</orcidid><orcidid>https://orcid.org/0000-0002-9000-7534</orcidid><orcidid>https://orcid.org/0000-0003-0204-9185</orcidid><orcidid>https://orcid.org/0000-0003-0006-7590</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.59933-59941 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3175367 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 015 <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">μ m GaAs pHEMT Broadband Chains Circuits Coupling Couplings Frequency ranges Gain Gallium arsenide high image rejection Image enhancement Integrated receiver front-end low LO power Low noise Millimeter waves Mixers Noise levels Passive imaging Passive millimeter wave imaging Phase control PHEMTs Power consumption Quadratures Radio frequency Receivers Rejection Topology V-band |
title | A V-Band Integrated Receiver Front-End Based on 0.15 μm GaAs pHEMT Process for Passive Millimeter-Wave Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20V-Band%20Integrated%20Receiver%20Front-End%20Based%20on%200.15%20%CE%BCm%20GaAs%20pHEMT%20Process%20for%20Passive%20Millimeter-Wave%20Imaging&rft.jtitle=IEEE%20access&rft.au=Gong,%20Jianhao&rft.date=2022&rft.volume=10&rft.spage=59933&rft.epage=59941&rft.pages=59933-59941&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3175367&rft_dat=%3Cproquest_cross%3E2675044499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675044499&rft_id=info:pmid/&rft_ieee_id=9782146&rft_doaj_id=oai_doaj_org_article_4634f3015eb74c78b97c25465998cec4&rfr_iscdi=true |