Edge Computing-Based SAT-Video Coding for Remote Sensing

This paper proposes an edge computing-based video coding implementation on an Earth observation satellite (SAT-video coding), which can encode video using limited resources and the power of mini/microsatellites. SAT-video coding proposes a hardware-related quantization (Q) function, hardware reducti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.52840-52852
Hauptverfasser: Bui, Trong-An, Lee, Pei-Jun, Chen, Kuan-Yu, Chen, Chia-Ray, Liu, Cynthia S. J., Lin, Hsin-Chia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52852
container_issue
container_start_page 52840
container_title IEEE access
container_volume 10
creator Bui, Trong-An
Lee, Pei-Jun
Chen, Kuan-Yu
Chen, Chia-Ray
Liu, Cynthia S. J.
Lin, Hsin-Chia
description This paper proposes an edge computing-based video coding implementation on an Earth observation satellite (SAT-video coding), which can encode video using limited resources and the power of mini/microsatellites. SAT-video coding proposes a hardware-related quantization (Q) function, hardware reduction of the motion estimation (ME) method, and simplified entropy coding (EC), which reduces the computation complexity. The hardware-related Q reduces hardware resource and power consumption by 72% and 55%, respectively, compared with traditional Q implementation. The hardware reduction of ME reduces resource use compared with regular ME implementation (59% of lookup tables [LUTs] and 79% of Registers). The total number of LUTs used for the simplified EC function is also much lower than other EC hardware implementations. The SAT-video encoder IP uses fewer hardware resources, and the power consumption is estimated at 0.0894 W at a high working frequency (125 MHz). The SAT-video encoding speed is 18.95 frames per second for 2560\times 2560 video. Therefore, the proposed SAT-video coding is an edge computation suitable for micro/minisatellites. The coding efficiency records the highest compression ratio at 33.8, with a peak signal-to-noise ratio of 34.46 dB. With the important task of designing edge computing based on satellite video encoding, these are adequate values for remote sensing video.
doi_str_mv 10.1109/ACCESS.2022.3174553
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3174553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9773309</ieee_id><doaj_id>oai_doaj_org_article_4428af7a49be4d9ab519ed4588790240</doaj_id><sourcerecordid>2669159325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d83cf1fd50ba13cc2d8fcd5cf1bd3bf720de5883eae81c39629d02c3705a90eb3</originalsourceid><addsrcrecordid>eNpNkF9rwjAUxcPYYOL8BL4U9lyXP02TPLriNkEYrG6vIU1upKLGpfVh335xFVleEn4559zLQWhK8IwQrJ7mVbWo6xnFlM4YEQXn7AaNKClVzjgrb_-979Gk67Y4HZkQFyMkF24DWRX2x1PfHjb5s-nAZfV8nX-1DkL6cQlnPsTsA_ahh6yGQ5fQA7rzZtfB5HKP0efLYl295av312U1X-W2wLLPnWTWE-84bgxh1lInvXU8scaxxguKHXApGRiQxDJVUuUwtUxgbhSGho3Rcsh1wWz1MbZ7E390MK3-AyFutIl9a3egi4JK44UpVAOFU6bhRIErUrxQmBY4ZT0OWccYvk_Q9XobTvGQ1te0LBXhilGeVGxQ2Ri6LoK_TiVYnxvXQ-P63Li-NJ5c08HVAsDVoYRgDCv2C5Apeos</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669159325</pqid></control><display><type>article</type><title>Edge Computing-Based SAT-Video Coding for Remote Sensing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bui, Trong-An ; Lee, Pei-Jun ; Chen, Kuan-Yu ; Chen, Chia-Ray ; Liu, Cynthia S. J. ; Lin, Hsin-Chia</creator><creatorcontrib>Bui, Trong-An ; Lee, Pei-Jun ; Chen, Kuan-Yu ; Chen, Chia-Ray ; Liu, Cynthia S. J. ; Lin, Hsin-Chia</creatorcontrib><description>This paper proposes an edge computing-based video coding implementation on an Earth observation satellite (SAT-video coding), which can encode video using limited resources and the power of mini/microsatellites. SAT-video coding proposes a hardware-related quantization (Q) function, hardware reduction of the motion estimation (ME) method, and simplified entropy coding (EC), which reduces the computation complexity. The hardware-related Q reduces hardware resource and power consumption by 72% and 55%, respectively, compared with traditional Q implementation. The hardware reduction of ME reduces resource use compared with regular ME implementation (59% of lookup tables [LUTs] and 79% of Registers). The total number of LUTs used for the simplified EC function is also much lower than other EC hardware implementations. The SAT-video encoder IP uses fewer hardware resources, and the power consumption is estimated at 0.0894 W at a high working frequency (125 MHz). The SAT-video encoding speed is 18.95 frames per second for &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2560\times 2560 &lt;/tex-math&gt;&lt;/inline-formula&gt; video. Therefore, the proposed SAT-video coding is an edge computation suitable for micro/minisatellites. The coding efficiency records the highest compression ratio at 33.8, with a peak signal-to-noise ratio of 34.46 dB. With the important task of designing edge computing based on satellite video encoding, these are adequate values for remote sensing video.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3174553</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coders ; Coding ; Compression ratio ; Earth observations (from space) ; Edge computing ; Encoding ; Field programmable gate arrays ; Frames per second ; Hardware ; hardware acceleration ; Lookup tables ; Mathematical models ; Microsatellites ; Motion simulation ; Power consumption ; Quantization (signal) ; Remote sensing ; remote sensing video ; satellite ; Satellite observation ; Satellites ; Signal to noise ratio ; Streaming media ; Video compression</subject><ispartof>IEEE access, 2022, Vol.10, p.52840-52852</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d83cf1fd50ba13cc2d8fcd5cf1bd3bf720de5883eae81c39629d02c3705a90eb3</citedby><cites>FETCH-LOGICAL-c408t-d83cf1fd50ba13cc2d8fcd5cf1bd3bf720de5883eae81c39629d02c3705a90eb3</cites><orcidid>0000-0001-7660-4060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9773309$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Bui, Trong-An</creatorcontrib><creatorcontrib>Lee, Pei-Jun</creatorcontrib><creatorcontrib>Chen, Kuan-Yu</creatorcontrib><creatorcontrib>Chen, Chia-Ray</creatorcontrib><creatorcontrib>Liu, Cynthia S. J.</creatorcontrib><creatorcontrib>Lin, Hsin-Chia</creatorcontrib><title>Edge Computing-Based SAT-Video Coding for Remote Sensing</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes an edge computing-based video coding implementation on an Earth observation satellite (SAT-video coding), which can encode video using limited resources and the power of mini/microsatellites. SAT-video coding proposes a hardware-related quantization (Q) function, hardware reduction of the motion estimation (ME) method, and simplified entropy coding (EC), which reduces the computation complexity. The hardware-related Q reduces hardware resource and power consumption by 72% and 55%, respectively, compared with traditional Q implementation. The hardware reduction of ME reduces resource use compared with regular ME implementation (59% of lookup tables [LUTs] and 79% of Registers). The total number of LUTs used for the simplified EC function is also much lower than other EC hardware implementations. The SAT-video encoder IP uses fewer hardware resources, and the power consumption is estimated at 0.0894 W at a high working frequency (125 MHz). The SAT-video encoding speed is 18.95 frames per second for &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2560\times 2560 &lt;/tex-math&gt;&lt;/inline-formula&gt; video. Therefore, the proposed SAT-video coding is an edge computation suitable for micro/minisatellites. The coding efficiency records the highest compression ratio at 33.8, with a peak signal-to-noise ratio of 34.46 dB. With the important task of designing edge computing based on satellite video encoding, these are adequate values for remote sensing video.</description><subject>Coders</subject><subject>Coding</subject><subject>Compression ratio</subject><subject>Earth observations (from space)</subject><subject>Edge computing</subject><subject>Encoding</subject><subject>Field programmable gate arrays</subject><subject>Frames per second</subject><subject>Hardware</subject><subject>hardware acceleration</subject><subject>Lookup tables</subject><subject>Mathematical models</subject><subject>Microsatellites</subject><subject>Motion simulation</subject><subject>Power consumption</subject><subject>Quantization (signal)</subject><subject>Remote sensing</subject><subject>remote sensing video</subject><subject>satellite</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Signal to noise ratio</subject><subject>Streaming media</subject><subject>Video compression</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkF9rwjAUxcPYYOL8BL4U9lyXP02TPLriNkEYrG6vIU1upKLGpfVh335xFVleEn4559zLQWhK8IwQrJ7mVbWo6xnFlM4YEQXn7AaNKClVzjgrb_-979Gk67Y4HZkQFyMkF24DWRX2x1PfHjb5s-nAZfV8nX-1DkL6cQlnPsTsA_ahh6yGQ5fQA7rzZtfB5HKP0efLYl295av312U1X-W2wLLPnWTWE-84bgxh1lInvXU8scaxxguKHXApGRiQxDJVUuUwtUxgbhSGho3Rcsh1wWz1MbZ7E390MK3-AyFutIl9a3egi4JK44UpVAOFU6bhRIErUrxQmBY4ZT0OWccYvk_Q9XobTvGQ1te0LBXhilGeVGxQ2Ri6LoK_TiVYnxvXQ-P63Li-NJ5c08HVAsDVoYRgDCv2C5Apeos</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Bui, Trong-An</creator><creator>Lee, Pei-Jun</creator><creator>Chen, Kuan-Yu</creator><creator>Chen, Chia-Ray</creator><creator>Liu, Cynthia S. J.</creator><creator>Lin, Hsin-Chia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7660-4060</orcidid></search><sort><creationdate>2022</creationdate><title>Edge Computing-Based SAT-Video Coding for Remote Sensing</title><author>Bui, Trong-An ; Lee, Pei-Jun ; Chen, Kuan-Yu ; Chen, Chia-Ray ; Liu, Cynthia S. J. ; Lin, Hsin-Chia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d83cf1fd50ba13cc2d8fcd5cf1bd3bf720de5883eae81c39629d02c3705a90eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coders</topic><topic>Coding</topic><topic>Compression ratio</topic><topic>Earth observations (from space)</topic><topic>Edge computing</topic><topic>Encoding</topic><topic>Field programmable gate arrays</topic><topic>Frames per second</topic><topic>Hardware</topic><topic>hardware acceleration</topic><topic>Lookup tables</topic><topic>Mathematical models</topic><topic>Microsatellites</topic><topic>Motion simulation</topic><topic>Power consumption</topic><topic>Quantization (signal)</topic><topic>Remote sensing</topic><topic>remote sensing video</topic><topic>satellite</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Signal to noise ratio</topic><topic>Streaming media</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui, Trong-An</creatorcontrib><creatorcontrib>Lee, Pei-Jun</creatorcontrib><creatorcontrib>Chen, Kuan-Yu</creatorcontrib><creatorcontrib>Chen, Chia-Ray</creatorcontrib><creatorcontrib>Liu, Cynthia S. J.</creatorcontrib><creatorcontrib>Lin, Hsin-Chia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bui, Trong-An</au><au>Lee, Pei-Jun</au><au>Chen, Kuan-Yu</au><au>Chen, Chia-Ray</au><au>Liu, Cynthia S. J.</au><au>Lin, Hsin-Chia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Computing-Based SAT-Video Coding for Remote Sensing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>52840</spage><epage>52852</epage><pages>52840-52852</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes an edge computing-based video coding implementation on an Earth observation satellite (SAT-video coding), which can encode video using limited resources and the power of mini/microsatellites. SAT-video coding proposes a hardware-related quantization (Q) function, hardware reduction of the motion estimation (ME) method, and simplified entropy coding (EC), which reduces the computation complexity. The hardware-related Q reduces hardware resource and power consumption by 72% and 55%, respectively, compared with traditional Q implementation. The hardware reduction of ME reduces resource use compared with regular ME implementation (59% of lookup tables [LUTs] and 79% of Registers). The total number of LUTs used for the simplified EC function is also much lower than other EC hardware implementations. The SAT-video encoder IP uses fewer hardware resources, and the power consumption is estimated at 0.0894 W at a high working frequency (125 MHz). The SAT-video encoding speed is 18.95 frames per second for &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2560\times 2560 &lt;/tex-math&gt;&lt;/inline-formula&gt; video. Therefore, the proposed SAT-video coding is an edge computation suitable for micro/minisatellites. The coding efficiency records the highest compression ratio at 33.8, with a peak signal-to-noise ratio of 34.46 dB. With the important task of designing edge computing based on satellite video encoding, these are adequate values for remote sensing video.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3174553</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7660-4060</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.52840-52852
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3174553
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Coders
Coding
Compression ratio
Earth observations (from space)
Edge computing
Encoding
Field programmable gate arrays
Frames per second
Hardware
hardware acceleration
Lookup tables
Mathematical models
Microsatellites
Motion simulation
Power consumption
Quantization (signal)
Remote sensing
remote sensing video
satellite
Satellite observation
Satellites
Signal to noise ratio
Streaming media
Video compression
title Edge Computing-Based SAT-Video Coding for Remote Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Computing-Based%20SAT-Video%20Coding%20for%20Remote%20Sensing&rft.jtitle=IEEE%20access&rft.au=Bui,%20Trong-An&rft.date=2022&rft.volume=10&rft.spage=52840&rft.epage=52852&rft.pages=52840-52852&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3174553&rft_dat=%3Cproquest_cross%3E2669159325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669159325&rft_id=info:pmid/&rft_ieee_id=9773309&rft_doaj_id=oai_doaj_org_article_4428af7a49be4d9ab519ed4588790240&rfr_iscdi=true