Bayesian In-Situ Calibration of Multiport Antennas for DoA Estimation: Theory and Measurements

The DoA of radio waves is used for many applications, e.g. the localization of autonomous robots and smart vehicles. Estimating the DoA is possible with a multiport antenna, e.g. an antenna array or a multi-mode antenna (MMA). In practice, DoA estimation performance decisively depends on accurate kn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.37967-37983
Hauptverfasser: Pohlmann, Robert, Zhang, Siwei, Staudinger, Emanuel, Caizzone, Stefano, Dammann, Armin, Hoeher, Peter A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37983
container_issue
container_start_page 37967
container_title IEEE access
container_volume 10
creator Pohlmann, Robert
Zhang, Siwei
Staudinger, Emanuel
Caizzone, Stefano
Dammann, Armin
Hoeher, Peter A.
description The DoA of radio waves is used for many applications, e.g. the localization of autonomous robots and smart vehicles. Estimating the DoA is possible with a multiport antenna, e.g. an antenna array or a multi-mode antenna (MMA). In practice, DoA estimation performance decisively depends on accurate knowledge of the antenna response, which makes antenna calibration vital. As the antenna surroundings influence its response, it is necessary to measure the entire device with installed antenna to obtain the installed antenna response. Antenna calibration is often done in a dedicated measurement chamber, which can be inconvenient and costly, especially for larger devices. Thus, auto- and in-situ calibration methods aim at making antenna calibration in a measurement chamber redundant. However, existing auto- and in-situ calibration methods are restricted to certain antenna types and certain calibrations. In this paper, we propose a Bayesian in-situ calibration algorithm based on a maximum a posteriori (MAP) estimator, which is suitable for arbitrary multiport antennas. The algorithm uses received signals from a transmitter, noisy external DoA observations, takes multipath propagation into account and does not require synchronization. Furthermore, we take an estimation theoretic perspective and provide an in-depth theoretical discussion of in-situ antenna calibration in unknown propagation conditions based on Bayesian information and the Bayesian Cramér-Rao bound (BCRB). Extensive simulations show that the proposed algorithm operates close to the BCRB and the achieved DoA estimation performance asymptotically approaches the case of a perfectly known antenna response. Finally, we provide an experimental validation, where we calibrate the antenna on a robotic rover and evaluate the DoA estimation performance using measurement data. With the proposed in-situ antenna calibration algorithm, DoA estimation performance is considerably improved compared to using an antenna response obtained by simulation or in a measurement chamber.
doi_str_mv 10.1109/ACCESS.2022.3164520
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3164520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9748139</ieee_id><doaj_id>oai_doaj_org_article_7f6c1bbf828b4037b34cfd7c4d63b6bf</doaj_id><sourcerecordid>2649790275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-99a044045e64560b7d87be51b688bfc035c543f888f23000c211f11e4d0cc2c23</originalsourceid><addsrcrecordid>eNpNUU1PGzEUXCEqgSi_gIslzhv8tbaXW9iGNhKIQ-gVy_ba4CjYqe095N_jsAj1Xd7TaGbeSNM0VwguEIL9zXIYVpvNAkOMFwQx2mF40pxjxPqWdISd_nefNZc5b2EdUaGOnzcvd-pgs1cBrEO78WUCg9p5nVTxMYDowOO0K34fUwHLUGwIKgMXE_gVl2CVi3__JN6C5zcb0wGoMIJHq_KU7LsNJf9sfji1y_bya180f-9Xz8Of9uHp93pYPrSGQlHavleQUkg7W-MzqPkouLYd0kwI7QwknekocUIIh0lNbzBCDiFLR2gMNphcNOvZd4xqK_ep5koHGZWXn0BMr1Kl4s3OSu6YQVo7gYWmkHBNqHEjN3RkRDPtqtf17LVP8d9kc5HbOKVQ40vMaM97iHlXWWRmmRRzTtZ9f0VQHnuRcy_y2Iv86qWqrmaVt9Z-K3pOBSI9-QDYHIhb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649790275</pqid></control><display><type>article</type><title>Bayesian In-Situ Calibration of Multiport Antennas for DoA Estimation: Theory and Measurements</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pohlmann, Robert ; Zhang, Siwei ; Staudinger, Emanuel ; Caizzone, Stefano ; Dammann, Armin ; Hoeher, Peter A.</creator><creatorcontrib>Pohlmann, Robert ; Zhang, Siwei ; Staudinger, Emanuel ; Caizzone, Stefano ; Dammann, Armin ; Hoeher, Peter A.</creatorcontrib><description>The DoA of radio waves is used for many applications, e.g. the localization of autonomous robots and smart vehicles. Estimating the DoA is possible with a multiport antenna, e.g. an antenna array or a multi-mode antenna (MMA). In practice, DoA estimation performance decisively depends on accurate knowledge of the antenna response, which makes antenna calibration vital. As the antenna surroundings influence its response, it is necessary to measure the entire device with installed antenna to obtain the installed antenna response. Antenna calibration is often done in a dedicated measurement chamber, which can be inconvenient and costly, especially for larger devices. Thus, auto- and in-situ calibration methods aim at making antenna calibration in a measurement chamber redundant. However, existing auto- and in-situ calibration methods are restricted to certain antenna types and certain calibrations. In this paper, we propose a Bayesian in-situ calibration algorithm based on a maximum a posteriori (MAP) estimator, which is suitable for arbitrary multiport antennas. The algorithm uses received signals from a transmitter, noisy external DoA observations, takes multipath propagation into account and does not require synchronization. Furthermore, we take an estimation theoretic perspective and provide an in-depth theoretical discussion of in-situ antenna calibration in unknown propagation conditions based on Bayesian information and the Bayesian Cramér-Rao bound (BCRB). Extensive simulations show that the proposed algorithm operates close to the BCRB and the achieved DoA estimation performance asymptotically approaches the case of a perfectly known antenna response. Finally, we provide an experimental validation, where we calibrate the antenna on a robotic rover and evaluate the DoA estimation performance using measurement data. With the proposed in-situ antenna calibration algorithm, DoA estimation performance is considerably improved compared to using an antenna response obtained by simulation or in a measurement chamber.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3164520</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Antenna arrays ; Antenna calibration ; Antenna measurements ; Antennas ; array calibration ; Bayes methods ; Bayesian analysis ; Calibration ; Chambers ; Cramér-Rao bound ; Direction-of-arrival estimation ; Estimation ; Intelligent vehicles ; multi-mode antenna ; Propagation ; Radio waves ; Synchronism</subject><ispartof>IEEE access, 2022, Vol.10, p.37967-37983</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-99a044045e64560b7d87be51b688bfc035c543f888f23000c211f11e4d0cc2c23</citedby><cites>FETCH-LOGICAL-c408t-99a044045e64560b7d87be51b688bfc035c543f888f23000c211f11e4d0cc2c23</cites><orcidid>0000-0003-4390-458X ; 0000-0003-3475-1710 ; 0000-0002-9434-7368 ; 0000-0002-9601-2887 ; 0000-0002-7112-1833 ; 0000-0001-7362-9406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9748139$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Pohlmann, Robert</creatorcontrib><creatorcontrib>Zhang, Siwei</creatorcontrib><creatorcontrib>Staudinger, Emanuel</creatorcontrib><creatorcontrib>Caizzone, Stefano</creatorcontrib><creatorcontrib>Dammann, Armin</creatorcontrib><creatorcontrib>Hoeher, Peter A.</creatorcontrib><title>Bayesian In-Situ Calibration of Multiport Antennas for DoA Estimation: Theory and Measurements</title><title>IEEE access</title><addtitle>Access</addtitle><description>The DoA of radio waves is used for many applications, e.g. the localization of autonomous robots and smart vehicles. Estimating the DoA is possible with a multiport antenna, e.g. an antenna array or a multi-mode antenna (MMA). In practice, DoA estimation performance decisively depends on accurate knowledge of the antenna response, which makes antenna calibration vital. As the antenna surroundings influence its response, it is necessary to measure the entire device with installed antenna to obtain the installed antenna response. Antenna calibration is often done in a dedicated measurement chamber, which can be inconvenient and costly, especially for larger devices. Thus, auto- and in-situ calibration methods aim at making antenna calibration in a measurement chamber redundant. However, existing auto- and in-situ calibration methods are restricted to certain antenna types and certain calibrations. In this paper, we propose a Bayesian in-situ calibration algorithm based on a maximum a posteriori (MAP) estimator, which is suitable for arbitrary multiport antennas. The algorithm uses received signals from a transmitter, noisy external DoA observations, takes multipath propagation into account and does not require synchronization. Furthermore, we take an estimation theoretic perspective and provide an in-depth theoretical discussion of in-situ antenna calibration in unknown propagation conditions based on Bayesian information and the Bayesian Cramér-Rao bound (BCRB). Extensive simulations show that the proposed algorithm operates close to the BCRB and the achieved DoA estimation performance asymptotically approaches the case of a perfectly known antenna response. Finally, we provide an experimental validation, where we calibrate the antenna on a robotic rover and evaluate the DoA estimation performance using measurement data. With the proposed in-situ antenna calibration algorithm, DoA estimation performance is considerably improved compared to using an antenna response obtained by simulation or in a measurement chamber.</description><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Antenna calibration</subject><subject>Antenna measurements</subject><subject>Antennas</subject><subject>array calibration</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Calibration</subject><subject>Chambers</subject><subject>Cramér-Rao bound</subject><subject>Direction-of-arrival estimation</subject><subject>Estimation</subject><subject>Intelligent vehicles</subject><subject>multi-mode antenna</subject><subject>Propagation</subject><subject>Radio waves</subject><subject>Synchronism</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEUXCEqgSi_gIslzhv8tbaXW9iGNhKIQ-gVy_ba4CjYqe095N_jsAj1Xd7TaGbeSNM0VwguEIL9zXIYVpvNAkOMFwQx2mF40pxjxPqWdISd_nefNZc5b2EdUaGOnzcvd-pgs1cBrEO78WUCg9p5nVTxMYDowOO0K34fUwHLUGwIKgMXE_gVl2CVi3__JN6C5zcb0wGoMIJHq_KU7LsNJf9sfji1y_bya180f-9Xz8Of9uHp93pYPrSGQlHavleQUkg7W-MzqPkouLYd0kwI7QwknekocUIIh0lNbzBCDiFLR2gMNphcNOvZd4xqK_ep5koHGZWXn0BMr1Kl4s3OSu6YQVo7gYWmkHBNqHEjN3RkRDPtqtf17LVP8d9kc5HbOKVQ40vMaM97iHlXWWRmmRRzTtZ9f0VQHnuRcy_y2Iv86qWqrmaVt9Z-K3pOBSI9-QDYHIhb</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pohlmann, Robert</creator><creator>Zhang, Siwei</creator><creator>Staudinger, Emanuel</creator><creator>Caizzone, Stefano</creator><creator>Dammann, Armin</creator><creator>Hoeher, Peter A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4390-458X</orcidid><orcidid>https://orcid.org/0000-0003-3475-1710</orcidid><orcidid>https://orcid.org/0000-0002-9434-7368</orcidid><orcidid>https://orcid.org/0000-0002-9601-2887</orcidid><orcidid>https://orcid.org/0000-0002-7112-1833</orcidid><orcidid>https://orcid.org/0000-0001-7362-9406</orcidid></search><sort><creationdate>2022</creationdate><title>Bayesian In-Situ Calibration of Multiport Antennas for DoA Estimation: Theory and Measurements</title><author>Pohlmann, Robert ; Zhang, Siwei ; Staudinger, Emanuel ; Caizzone, Stefano ; Dammann, Armin ; Hoeher, Peter A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-99a044045e64560b7d87be51b688bfc035c543f888f23000c211f11e4d0cc2c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Antenna calibration</topic><topic>Antenna measurements</topic><topic>Antennas</topic><topic>array calibration</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Calibration</topic><topic>Chambers</topic><topic>Cramér-Rao bound</topic><topic>Direction-of-arrival estimation</topic><topic>Estimation</topic><topic>Intelligent vehicles</topic><topic>multi-mode antenna</topic><topic>Propagation</topic><topic>Radio waves</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pohlmann, Robert</creatorcontrib><creatorcontrib>Zhang, Siwei</creatorcontrib><creatorcontrib>Staudinger, Emanuel</creatorcontrib><creatorcontrib>Caizzone, Stefano</creatorcontrib><creatorcontrib>Dammann, Armin</creatorcontrib><creatorcontrib>Hoeher, Peter A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pohlmann, Robert</au><au>Zhang, Siwei</au><au>Staudinger, Emanuel</au><au>Caizzone, Stefano</au><au>Dammann, Armin</au><au>Hoeher, Peter A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian In-Situ Calibration of Multiport Antennas for DoA Estimation: Theory and Measurements</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>37967</spage><epage>37983</epage><pages>37967-37983</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The DoA of radio waves is used for many applications, e.g. the localization of autonomous robots and smart vehicles. Estimating the DoA is possible with a multiport antenna, e.g. an antenna array or a multi-mode antenna (MMA). In practice, DoA estimation performance decisively depends on accurate knowledge of the antenna response, which makes antenna calibration vital. As the antenna surroundings influence its response, it is necessary to measure the entire device with installed antenna to obtain the installed antenna response. Antenna calibration is often done in a dedicated measurement chamber, which can be inconvenient and costly, especially for larger devices. Thus, auto- and in-situ calibration methods aim at making antenna calibration in a measurement chamber redundant. However, existing auto- and in-situ calibration methods are restricted to certain antenna types and certain calibrations. In this paper, we propose a Bayesian in-situ calibration algorithm based on a maximum a posteriori (MAP) estimator, which is suitable for arbitrary multiport antennas. The algorithm uses received signals from a transmitter, noisy external DoA observations, takes multipath propagation into account and does not require synchronization. Furthermore, we take an estimation theoretic perspective and provide an in-depth theoretical discussion of in-situ antenna calibration in unknown propagation conditions based on Bayesian information and the Bayesian Cramér-Rao bound (BCRB). Extensive simulations show that the proposed algorithm operates close to the BCRB and the achieved DoA estimation performance asymptotically approaches the case of a perfectly known antenna response. Finally, we provide an experimental validation, where we calibrate the antenna on a robotic rover and evaluate the DoA estimation performance using measurement data. With the proposed in-situ antenna calibration algorithm, DoA estimation performance is considerably improved compared to using an antenna response obtained by simulation or in a measurement chamber.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3164520</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4390-458X</orcidid><orcidid>https://orcid.org/0000-0003-3475-1710</orcidid><orcidid>https://orcid.org/0000-0002-9434-7368</orcidid><orcidid>https://orcid.org/0000-0002-9601-2887</orcidid><orcidid>https://orcid.org/0000-0002-7112-1833</orcidid><orcidid>https://orcid.org/0000-0001-7362-9406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.37967-37983
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3164520
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Antenna arrays
Antenna calibration
Antenna measurements
Antennas
array calibration
Bayes methods
Bayesian analysis
Calibration
Chambers
Cramér-Rao bound
Direction-of-arrival estimation
Estimation
Intelligent vehicles
multi-mode antenna
Propagation
Radio waves
Synchronism
title Bayesian In-Situ Calibration of Multiport Antennas for DoA Estimation: Theory and Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20In-Situ%20Calibration%20of%20Multiport%20Antennas%20for%20DoA%20Estimation:%20Theory%20and%20Measurements&rft.jtitle=IEEE%20access&rft.au=Pohlmann,%20Robert&rft.date=2022&rft.volume=10&rft.spage=37967&rft.epage=37983&rft.pages=37967-37983&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3164520&rft_dat=%3Cproquest_cross%3E2649790275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649790275&rft_id=info:pmid/&rft_ieee_id=9748139&rft_doaj_id=oai_doaj_org_article_7f6c1bbf828b4037b34cfd7c4d63b6bf&rfr_iscdi=true