Bayesian In-Situ Calibration of Multiport Antennas for DoA Estimation: Theory and Measurements
The DoA of radio waves is used for many applications, e.g. the localization of autonomous robots and smart vehicles. Estimating the DoA is possible with a multiport antenna, e.g. an antenna array or a multi-mode antenna (MMA). In practice, DoA estimation performance decisively depends on accurate kn...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.37967-37983 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37983 |
---|---|
container_issue | |
container_start_page | 37967 |
container_title | IEEE access |
container_volume | 10 |
creator | Pohlmann, Robert Zhang, Siwei Staudinger, Emanuel Caizzone, Stefano Dammann, Armin Hoeher, Peter A. |
description | The DoA of radio waves is used for many applications, e.g. the localization of autonomous robots and smart vehicles. Estimating the DoA is possible with a multiport antenna, e.g. an antenna array or a multi-mode antenna (MMA). In practice, DoA estimation performance decisively depends on accurate knowledge of the antenna response, which makes antenna calibration vital. As the antenna surroundings influence its response, it is necessary to measure the entire device with installed antenna to obtain the installed antenna response. Antenna calibration is often done in a dedicated measurement chamber, which can be inconvenient and costly, especially for larger devices. Thus, auto- and in-situ calibration methods aim at making antenna calibration in a measurement chamber redundant. However, existing auto- and in-situ calibration methods are restricted to certain antenna types and certain calibrations. In this paper, we propose a Bayesian in-situ calibration algorithm based on a maximum a posteriori (MAP) estimator, which is suitable for arbitrary multiport antennas. The algorithm uses received signals from a transmitter, noisy external DoA observations, takes multipath propagation into account and does not require synchronization. Furthermore, we take an estimation theoretic perspective and provide an in-depth theoretical discussion of in-situ antenna calibration in unknown propagation conditions based on Bayesian information and the Bayesian Cramér-Rao bound (BCRB). Extensive simulations show that the proposed algorithm operates close to the BCRB and the achieved DoA estimation performance asymptotically approaches the case of a perfectly known antenna response. Finally, we provide an experimental validation, where we calibrate the antenna on a robotic rover and evaluate the DoA estimation performance using measurement data. With the proposed in-situ antenna calibration algorithm, DoA estimation performance is considerably improved compared to using an antenna response obtained by simulation or in a measurement chamber. |
doi_str_mv | 10.1109/ACCESS.2022.3164520 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3164520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9748139</ieee_id><doaj_id>oai_doaj_org_article_7f6c1bbf828b4037b34cfd7c4d63b6bf</doaj_id><sourcerecordid>2649790275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-99a044045e64560b7d87be51b688bfc035c543f888f23000c211f11e4d0cc2c23</originalsourceid><addsrcrecordid>eNpNUU1PGzEUXCEqgSi_gIslzhv8tbaXW9iGNhKIQ-gVy_ba4CjYqe095N_jsAj1Xd7TaGbeSNM0VwguEIL9zXIYVpvNAkOMFwQx2mF40pxjxPqWdISd_nefNZc5b2EdUaGOnzcvd-pgs1cBrEO78WUCg9p5nVTxMYDowOO0K34fUwHLUGwIKgMXE_gVl2CVi3__JN6C5zcb0wGoMIJHq_KU7LsNJf9sfji1y_bya180f-9Xz8Of9uHp93pYPrSGQlHavleQUkg7W-MzqPkouLYd0kwI7QwknekocUIIh0lNbzBCDiFLR2gMNphcNOvZd4xqK_ep5koHGZWXn0BMr1Kl4s3OSu6YQVo7gYWmkHBNqHEjN3RkRDPtqtf17LVP8d9kc5HbOKVQ40vMaM97iHlXWWRmmRRzTtZ9f0VQHnuRcy_y2Iv86qWqrmaVt9Z-K3pOBSI9-QDYHIhb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649790275</pqid></control><display><type>article</type><title>Bayesian In-Situ Calibration of Multiport Antennas for DoA Estimation: Theory and Measurements</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pohlmann, Robert ; Zhang, Siwei ; Staudinger, Emanuel ; Caizzone, Stefano ; Dammann, Armin ; Hoeher, Peter A.</creator><creatorcontrib>Pohlmann, Robert ; Zhang, Siwei ; Staudinger, Emanuel ; Caizzone, Stefano ; Dammann, Armin ; Hoeher, Peter A.</creatorcontrib><description>The DoA of radio waves is used for many applications, e.g. the localization of autonomous robots and smart vehicles. Estimating the DoA is possible with a multiport antenna, e.g. an antenna array or a multi-mode antenna (MMA). In practice, DoA estimation performance decisively depends on accurate knowledge of the antenna response, which makes antenna calibration vital. As the antenna surroundings influence its response, it is necessary to measure the entire device with installed antenna to obtain the installed antenna response. Antenna calibration is often done in a dedicated measurement chamber, which can be inconvenient and costly, especially for larger devices. Thus, auto- and in-situ calibration methods aim at making antenna calibration in a measurement chamber redundant. However, existing auto- and in-situ calibration methods are restricted to certain antenna types and certain calibrations. In this paper, we propose a Bayesian in-situ calibration algorithm based on a maximum a posteriori (MAP) estimator, which is suitable for arbitrary multiport antennas. The algorithm uses received signals from a transmitter, noisy external DoA observations, takes multipath propagation into account and does not require synchronization. Furthermore, we take an estimation theoretic perspective and provide an in-depth theoretical discussion of in-situ antenna calibration in unknown propagation conditions based on Bayesian information and the Bayesian Cramér-Rao bound (BCRB). Extensive simulations show that the proposed algorithm operates close to the BCRB and the achieved DoA estimation performance asymptotically approaches the case of a perfectly known antenna response. Finally, we provide an experimental validation, where we calibrate the antenna on a robotic rover and evaluate the DoA estimation performance using measurement data. With the proposed in-situ antenna calibration algorithm, DoA estimation performance is considerably improved compared to using an antenna response obtained by simulation or in a measurement chamber.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3164520</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Antenna arrays ; Antenna calibration ; Antenna measurements ; Antennas ; array calibration ; Bayes methods ; Bayesian analysis ; Calibration ; Chambers ; Cramér-Rao bound ; Direction-of-arrival estimation ; Estimation ; Intelligent vehicles ; multi-mode antenna ; Propagation ; Radio waves ; Synchronism</subject><ispartof>IEEE access, 2022, Vol.10, p.37967-37983</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-99a044045e64560b7d87be51b688bfc035c543f888f23000c211f11e4d0cc2c23</citedby><cites>FETCH-LOGICAL-c408t-99a044045e64560b7d87be51b688bfc035c543f888f23000c211f11e4d0cc2c23</cites><orcidid>0000-0003-4390-458X ; 0000-0003-3475-1710 ; 0000-0002-9434-7368 ; 0000-0002-9601-2887 ; 0000-0002-7112-1833 ; 0000-0001-7362-9406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9748139$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Pohlmann, Robert</creatorcontrib><creatorcontrib>Zhang, Siwei</creatorcontrib><creatorcontrib>Staudinger, Emanuel</creatorcontrib><creatorcontrib>Caizzone, Stefano</creatorcontrib><creatorcontrib>Dammann, Armin</creatorcontrib><creatorcontrib>Hoeher, Peter A.</creatorcontrib><title>Bayesian In-Situ Calibration of Multiport Antennas for DoA Estimation: Theory and Measurements</title><title>IEEE access</title><addtitle>Access</addtitle><description>The DoA of radio waves is used for many applications, e.g. the localization of autonomous robots and smart vehicles. Estimating the DoA is possible with a multiport antenna, e.g. an antenna array or a multi-mode antenna (MMA). In practice, DoA estimation performance decisively depends on accurate knowledge of the antenna response, which makes antenna calibration vital. As the antenna surroundings influence its response, it is necessary to measure the entire device with installed antenna to obtain the installed antenna response. Antenna calibration is often done in a dedicated measurement chamber, which can be inconvenient and costly, especially for larger devices. Thus, auto- and in-situ calibration methods aim at making antenna calibration in a measurement chamber redundant. However, existing auto- and in-situ calibration methods are restricted to certain antenna types and certain calibrations. In this paper, we propose a Bayesian in-situ calibration algorithm based on a maximum a posteriori (MAP) estimator, which is suitable for arbitrary multiport antennas. The algorithm uses received signals from a transmitter, noisy external DoA observations, takes multipath propagation into account and does not require synchronization. Furthermore, we take an estimation theoretic perspective and provide an in-depth theoretical discussion of in-situ antenna calibration in unknown propagation conditions based on Bayesian information and the Bayesian Cramér-Rao bound (BCRB). Extensive simulations show that the proposed algorithm operates close to the BCRB and the achieved DoA estimation performance asymptotically approaches the case of a perfectly known antenna response. Finally, we provide an experimental validation, where we calibrate the antenna on a robotic rover and evaluate the DoA estimation performance using measurement data. With the proposed in-situ antenna calibration algorithm, DoA estimation performance is considerably improved compared to using an antenna response obtained by simulation or in a measurement chamber.</description><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Antenna calibration</subject><subject>Antenna measurements</subject><subject>Antennas</subject><subject>array calibration</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Calibration</subject><subject>Chambers</subject><subject>Cramér-Rao bound</subject><subject>Direction-of-arrival estimation</subject><subject>Estimation</subject><subject>Intelligent vehicles</subject><subject>multi-mode antenna</subject><subject>Propagation</subject><subject>Radio waves</subject><subject>Synchronism</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEUXCEqgSi_gIslzhv8tbaXW9iGNhKIQ-gVy_ba4CjYqe095N_jsAj1Xd7TaGbeSNM0VwguEIL9zXIYVpvNAkOMFwQx2mF40pxjxPqWdISd_nefNZc5b2EdUaGOnzcvd-pgs1cBrEO78WUCg9p5nVTxMYDowOO0K34fUwHLUGwIKgMXE_gVl2CVi3__JN6C5zcb0wGoMIJHq_KU7LsNJf9sfji1y_bya180f-9Xz8Of9uHp93pYPrSGQlHavleQUkg7W-MzqPkouLYd0kwI7QwknekocUIIh0lNbzBCDiFLR2gMNphcNOvZd4xqK_ep5koHGZWXn0BMr1Kl4s3OSu6YQVo7gYWmkHBNqHEjN3RkRDPtqtf17LVP8d9kc5HbOKVQ40vMaM97iHlXWWRmmRRzTtZ9f0VQHnuRcy_y2Iv86qWqrmaVt9Z-K3pOBSI9-QDYHIhb</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pohlmann, Robert</creator><creator>Zhang, Siwei</creator><creator>Staudinger, Emanuel</creator><creator>Caizzone, Stefano</creator><creator>Dammann, Armin</creator><creator>Hoeher, Peter A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4390-458X</orcidid><orcidid>https://orcid.org/0000-0003-3475-1710</orcidid><orcidid>https://orcid.org/0000-0002-9434-7368</orcidid><orcidid>https://orcid.org/0000-0002-9601-2887</orcidid><orcidid>https://orcid.org/0000-0002-7112-1833</orcidid><orcidid>https://orcid.org/0000-0001-7362-9406</orcidid></search><sort><creationdate>2022</creationdate><title>Bayesian In-Situ Calibration of Multiport Antennas for DoA Estimation: Theory and Measurements</title><author>Pohlmann, Robert ; Zhang, Siwei ; Staudinger, Emanuel ; Caizzone, Stefano ; Dammann, Armin ; Hoeher, Peter A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-99a044045e64560b7d87be51b688bfc035c543f888f23000c211f11e4d0cc2c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Antenna calibration</topic><topic>Antenna measurements</topic><topic>Antennas</topic><topic>array calibration</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Calibration</topic><topic>Chambers</topic><topic>Cramér-Rao bound</topic><topic>Direction-of-arrival estimation</topic><topic>Estimation</topic><topic>Intelligent vehicles</topic><topic>multi-mode antenna</topic><topic>Propagation</topic><topic>Radio waves</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pohlmann, Robert</creatorcontrib><creatorcontrib>Zhang, Siwei</creatorcontrib><creatorcontrib>Staudinger, Emanuel</creatorcontrib><creatorcontrib>Caizzone, Stefano</creatorcontrib><creatorcontrib>Dammann, Armin</creatorcontrib><creatorcontrib>Hoeher, Peter A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pohlmann, Robert</au><au>Zhang, Siwei</au><au>Staudinger, Emanuel</au><au>Caizzone, Stefano</au><au>Dammann, Armin</au><au>Hoeher, Peter A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian In-Situ Calibration of Multiport Antennas for DoA Estimation: Theory and Measurements</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>37967</spage><epage>37983</epage><pages>37967-37983</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The DoA of radio waves is used for many applications, e.g. the localization of autonomous robots and smart vehicles. Estimating the DoA is possible with a multiport antenna, e.g. an antenna array or a multi-mode antenna (MMA). In practice, DoA estimation performance decisively depends on accurate knowledge of the antenna response, which makes antenna calibration vital. As the antenna surroundings influence its response, it is necessary to measure the entire device with installed antenna to obtain the installed antenna response. Antenna calibration is often done in a dedicated measurement chamber, which can be inconvenient and costly, especially for larger devices. Thus, auto- and in-situ calibration methods aim at making antenna calibration in a measurement chamber redundant. However, existing auto- and in-situ calibration methods are restricted to certain antenna types and certain calibrations. In this paper, we propose a Bayesian in-situ calibration algorithm based on a maximum a posteriori (MAP) estimator, which is suitable for arbitrary multiport antennas. The algorithm uses received signals from a transmitter, noisy external DoA observations, takes multipath propagation into account and does not require synchronization. Furthermore, we take an estimation theoretic perspective and provide an in-depth theoretical discussion of in-situ antenna calibration in unknown propagation conditions based on Bayesian information and the Bayesian Cramér-Rao bound (BCRB). Extensive simulations show that the proposed algorithm operates close to the BCRB and the achieved DoA estimation performance asymptotically approaches the case of a perfectly known antenna response. Finally, we provide an experimental validation, where we calibrate the antenna on a robotic rover and evaluate the DoA estimation performance using measurement data. With the proposed in-situ antenna calibration algorithm, DoA estimation performance is considerably improved compared to using an antenna response obtained by simulation or in a measurement chamber.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3164520</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4390-458X</orcidid><orcidid>https://orcid.org/0000-0003-3475-1710</orcidid><orcidid>https://orcid.org/0000-0002-9434-7368</orcidid><orcidid>https://orcid.org/0000-0002-9601-2887</orcidid><orcidid>https://orcid.org/0000-0002-7112-1833</orcidid><orcidid>https://orcid.org/0000-0001-7362-9406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.37967-37983 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3164520 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Antenna arrays Antenna calibration Antenna measurements Antennas array calibration Bayes methods Bayesian analysis Calibration Chambers Cramér-Rao bound Direction-of-arrival estimation Estimation Intelligent vehicles multi-mode antenna Propagation Radio waves Synchronism |
title | Bayesian In-Situ Calibration of Multiport Antennas for DoA Estimation: Theory and Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20In-Situ%20Calibration%20of%20Multiport%20Antennas%20for%20DoA%20Estimation:%20Theory%20and%20Measurements&rft.jtitle=IEEE%20access&rft.au=Pohlmann,%20Robert&rft.date=2022&rft.volume=10&rft.spage=37967&rft.epage=37983&rft.pages=37967-37983&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3164520&rft_dat=%3Cproquest_cross%3E2649790275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649790275&rft_id=info:pmid/&rft_ieee_id=9748139&rft_doaj_id=oai_doaj_org_article_7f6c1bbf828b4037b34cfd7c4d63b6bf&rfr_iscdi=true |