Online Path Planning Framework for UAV in Rural Areas
A motion strategy plays an important role in supporting autonomous Unmanned Aerial Vehicle (UAV) movement. Many studies have been conducted to improve the motion frameworks in terms of its robustness, safety and performance. Most of them worked on the prior known maps scenario where the area informa...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.37572-37585 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37585 |
---|---|
container_issue | |
container_start_page | 37572 |
container_title | IEEE access |
container_volume | 10 |
creator | Airlangga, Gregorius Liu, Alan |
description | A motion strategy plays an important role in supporting autonomous Unmanned Aerial Vehicle (UAV) movement. Many studies have been conducted to improve the motion frameworks in terms of its robustness, safety and performance. Most of them worked on the prior known maps scenario where the area information was collected by Global Positioning System (GPS) and satellite cameras. Even though the scheme can provide high quality map, the computation of motion planning remains dependent on the communication signal. In the rural areas such as forests and mountains, where communication signal does not perform well, unclear and noisy terrain maps can be generated and lead to mission failure. Therefore, it is significant that an alternative framework to enhance autonomous UAV motion performance in these certain conditions should be developed. Our work focuses on developing a high performance path planner for autonomous UAV motion when communication signal does not work well in rural areas. The search mission problem in forest terrain has been implemented in 3D simulation as an evaluation. By conducting a simulation process repeatedly with different test cases for positions, time constraints, flight speed (3-11 m/s) and flight range, our path planning framework can achieve completeness between 90-100% and better performance compared to others. |
doi_str_mv | 10.1109/ACCESS.2022.3164505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3164505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9748136</ieee_id><doaj_id>oai_doaj_org_article_749dd32069204d289da8d3505db07eea</doaj_id><sourcerecordid>2650297481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-366c617af9c846442ab377b2219f539c23223b12ffb705f83da8c6973d5205613</originalsourceid><addsrcrecordid>eNpNkF1rwjAUhsPYYOL8Bd4Edl2XnHw1l1J0EwRlzt2GtE1dXW1cWhn796uryHJzwuG8zzk8CI0pmVBK9NM0SWabzQQIwIRRyQURN2gAVOqICSZv__3v0ahp9qR7cdcSaoDEqq7K2uG1bT_wurJ1XdY7PA_24L59-MSFD3g7fcdljV9PwVZ4GpxtHtBdYavGjS51iLbz2VvyEi1Xz4tkuowyTngbMSkzSZUtdBZzyTnYlCmVAlBdCKYzYAAspVAUqSKiiFlu40xqxXIBREjKhmjRc3Nv9-YYyoMNP8bb0vw1fNgZG9oyq5xRXOc5AyI1EJ5DrDtWzjoXeUqUc7ZjPfasY_BfJ9e0Zu9Poe7ONyAFAa14fN7I-qks-KYJrrhupcScdZtetznrNhfdXWrcp0rn3DXREyX7BeaEd18</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650297481</pqid></control><display><type>article</type><title>Online Path Planning Framework for UAV in Rural Areas</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Airlangga, Gregorius ; Liu, Alan</creator><creatorcontrib>Airlangga, Gregorius ; Liu, Alan</creatorcontrib><description>A motion strategy plays an important role in supporting autonomous Unmanned Aerial Vehicle (UAV) movement. Many studies have been conducted to improve the motion frameworks in terms of its robustness, safety and performance. Most of them worked on the prior known maps scenario where the area information was collected by Global Positioning System (GPS) and satellite cameras. Even though the scheme can provide high quality map, the computation of motion planning remains dependent on the communication signal. In the rural areas such as forests and mountains, where communication signal does not perform well, unclear and noisy terrain maps can be generated and lead to mission failure. Therefore, it is significant that an alternative framework to enhance autonomous UAV motion performance in these certain conditions should be developed. Our work focuses on developing a high performance path planner for autonomous UAV motion when communication signal does not work well in rural areas. The search mission problem in forest terrain has been implemented in 3D simulation as an evaluation. By conducting a simulation process repeatedly with different test cases for positions, time constraints, flight speed (3-11 m/s) and flight range, our path planning framework can achieve completeness between 90-100% and better performance compared to others.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3164505</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Airspeed ; Communication ; Global positioning systems ; GPS ; Hardware ; Laser radar ; Motion planning ; Mountains ; Movement ; Online path planning ; Path planning ; Planning ; Probabilistic logic ; Real-time systems ; Rural areas ; Satellite navigation systems ; Sensors ; Terrain mapping ; UAV ; Unmanned aerial vehicles</subject><ispartof>IEEE access, 2022, Vol.10, p.37572-37585</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-366c617af9c846442ab377b2219f539c23223b12ffb705f83da8c6973d5205613</citedby><cites>FETCH-LOGICAL-c404t-366c617af9c846442ab377b2219f539c23223b12ffb705f83da8c6973d5205613</cites><orcidid>0000-0001-8162-6942 ; 0000-0002-8884-6662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9748136$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Airlangga, Gregorius</creatorcontrib><creatorcontrib>Liu, Alan</creatorcontrib><title>Online Path Planning Framework for UAV in Rural Areas</title><title>IEEE access</title><addtitle>Access</addtitle><description>A motion strategy plays an important role in supporting autonomous Unmanned Aerial Vehicle (UAV) movement. Many studies have been conducted to improve the motion frameworks in terms of its robustness, safety and performance. Most of them worked on the prior known maps scenario where the area information was collected by Global Positioning System (GPS) and satellite cameras. Even though the scheme can provide high quality map, the computation of motion planning remains dependent on the communication signal. In the rural areas such as forests and mountains, where communication signal does not perform well, unclear and noisy terrain maps can be generated and lead to mission failure. Therefore, it is significant that an alternative framework to enhance autonomous UAV motion performance in these certain conditions should be developed. Our work focuses on developing a high performance path planner for autonomous UAV motion when communication signal does not work well in rural areas. The search mission problem in forest terrain has been implemented in 3D simulation as an evaluation. By conducting a simulation process repeatedly with different test cases for positions, time constraints, flight speed (3-11 m/s) and flight range, our path planning framework can achieve completeness between 90-100% and better performance compared to others.</description><subject>Airspeed</subject><subject>Communication</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Hardware</subject><subject>Laser radar</subject><subject>Motion planning</subject><subject>Mountains</subject><subject>Movement</subject><subject>Online path planning</subject><subject>Path planning</subject><subject>Planning</subject><subject>Probabilistic logic</subject><subject>Real-time systems</subject><subject>Rural areas</subject><subject>Satellite navigation systems</subject><subject>Sensors</subject><subject>Terrain mapping</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkF1rwjAUhsPYYOL8Bd4Edl2XnHw1l1J0EwRlzt2GtE1dXW1cWhn796uryHJzwuG8zzk8CI0pmVBK9NM0SWabzQQIwIRRyQURN2gAVOqICSZv__3v0ahp9qR7cdcSaoDEqq7K2uG1bT_wurJ1XdY7PA_24L59-MSFD3g7fcdljV9PwVZ4GpxtHtBdYavGjS51iLbz2VvyEi1Xz4tkuowyTngbMSkzSZUtdBZzyTnYlCmVAlBdCKYzYAAspVAUqSKiiFlu40xqxXIBREjKhmjRc3Nv9-YYyoMNP8bb0vw1fNgZG9oyq5xRXOc5AyI1EJ5DrDtWzjoXeUqUc7ZjPfasY_BfJ9e0Zu9Poe7ONyAFAa14fN7I-qks-KYJrrhupcScdZtetznrNhfdXWrcp0rn3DXREyX7BeaEd18</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Airlangga, Gregorius</creator><creator>Liu, Alan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8162-6942</orcidid><orcidid>https://orcid.org/0000-0002-8884-6662</orcidid></search><sort><creationdate>2022</creationdate><title>Online Path Planning Framework for UAV in Rural Areas</title><author>Airlangga, Gregorius ; Liu, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-366c617af9c846442ab377b2219f539c23223b12ffb705f83da8c6973d5205613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Airspeed</topic><topic>Communication</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Hardware</topic><topic>Laser radar</topic><topic>Motion planning</topic><topic>Mountains</topic><topic>Movement</topic><topic>Online path planning</topic><topic>Path planning</topic><topic>Planning</topic><topic>Probabilistic logic</topic><topic>Real-time systems</topic><topic>Rural areas</topic><topic>Satellite navigation systems</topic><topic>Sensors</topic><topic>Terrain mapping</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Airlangga, Gregorius</creatorcontrib><creatorcontrib>Liu, Alan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Airlangga, Gregorius</au><au>Liu, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Path Planning Framework for UAV in Rural Areas</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>37572</spage><epage>37585</epage><pages>37572-37585</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A motion strategy plays an important role in supporting autonomous Unmanned Aerial Vehicle (UAV) movement. Many studies have been conducted to improve the motion frameworks in terms of its robustness, safety and performance. Most of them worked on the prior known maps scenario where the area information was collected by Global Positioning System (GPS) and satellite cameras. Even though the scheme can provide high quality map, the computation of motion planning remains dependent on the communication signal. In the rural areas such as forests and mountains, where communication signal does not perform well, unclear and noisy terrain maps can be generated and lead to mission failure. Therefore, it is significant that an alternative framework to enhance autonomous UAV motion performance in these certain conditions should be developed. Our work focuses on developing a high performance path planner for autonomous UAV motion when communication signal does not work well in rural areas. The search mission problem in forest terrain has been implemented in 3D simulation as an evaluation. By conducting a simulation process repeatedly with different test cases for positions, time constraints, flight speed (3-11 m/s) and flight range, our path planning framework can achieve completeness between 90-100% and better performance compared to others.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3164505</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8162-6942</orcidid><orcidid>https://orcid.org/0000-0002-8884-6662</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.37572-37585 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3164505 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Airspeed Communication Global positioning systems GPS Hardware Laser radar Motion planning Mountains Movement Online path planning Path planning Planning Probabilistic logic Real-time systems Rural areas Satellite navigation systems Sensors Terrain mapping UAV Unmanned aerial vehicles |
title | Online Path Planning Framework for UAV in Rural Areas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Path%20Planning%20Framework%20for%20UAV%20in%20Rural%20Areas&rft.jtitle=IEEE%20access&rft.au=Airlangga,%20Gregorius&rft.date=2022&rft.volume=10&rft.spage=37572&rft.epage=37585&rft.pages=37572-37585&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3164505&rft_dat=%3Cproquest_cross%3E2650297481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650297481&rft_id=info:pmid/&rft_ieee_id=9748136&rft_doaj_id=oai_doaj_org_article_749dd32069204d289da8d3505db07eea&rfr_iscdi=true |