Compact Instrumentation for Accurate Detection and Measurement of Glucose Concentration Using Photoacoustic Spectroscopy
In this work, a novel compact and accurate glucose concentration measurement system is developed using the well-established photoacoustic Near Infra-Red spectroscopy. The proposed in-vitro instrumentation methods are in a small form factor, making it a viable candidate and precursor for an in-vivo n...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.31885-31895 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31895 |
---|---|
container_issue | |
container_start_page | 31885 |
container_title | IEEE access |
container_volume | 10 |
creator | Shaikh, Faheem Haworth, Noah Wells, Riley Bishop, Jodi Chatterjee, Shre K. Banerjee, Sankha Laha, Soumyasanta |
description | In this work, a novel compact and accurate glucose concentration measurement system is developed using the well-established photoacoustic Near Infra-Red spectroscopy. The proposed in-vitro instrumentation methods are in a small form factor, making it a viable candidate and precursor for an in-vivo non-invasive wearable blood glucose monitoring in the near future. The accuracy comes from the phase sensitive detection of the electrical signal. This detection technique uses an off-the shelf modulator/demodulator integrated circuit configured as a lock-in amplifier to increase the signal to noise ratio multifold. No prior work on photoacoustic spectroscopy, has taken advantage of this detection methodology in such a small form factor. The dimension of the lock-in-amplifier is 13mm \times 10.65mm \times 2.65mm. The maximum linear dimension of the exciting laser is 5.6 mm. The acoustic sensor (transducer) has a dimension of 42mm \times 12mm. Furthermore, the measurement and analyses of the observed data uses multiple stochastic and machine learning techniques to bring out the best correlation fit between the glucose concentration and a specific feature of the electrical signal. With these methods and techniques, a strong correlation was confirmed between the glucose concentration and the amplitude of the electrical signal. The computed correlation coefficient between the signal amplitude and glucose concentration is 97% while the p-value is 5.6E-6. To the best of our knowledge, this is the first work to report photoacoustic spectroscopy for glucose concentration measurement in a compact form, with lock-in amplifier and aided with machine learning algorithms for future application as a wearable device. |
doi_str_mv | 10.1109/ACCESS.2022.3158945 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3158945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9733351</ieee_id><doaj_id>oai_doaj_org_article_a012004eee2840a786611dc0b84443bd</doaj_id><sourcerecordid>2643026783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-cc3889d940ed2d827c398fe8b18b7fee287c07431b681dff638f784993f8cb883</originalsourceid><addsrcrecordid>eNpNkc1q3DAUhU1oISHNE2QjyHqm-rN1tRzcNB1ISWCatZCvpcTDjOVKMjRvH00cQrWROJzz3StOVV0zumaM6u-btr3d7daccr4WrAYt67PqgrNGr0Qtmi__vc-rq5T2tBwoUq0uqn9tOE4WM9mOKcf56MZs8xBG4kMkG8Q52uzID5cdvst27MlvZ9Mc3clLgid3hxlDcqQNIxYpLvmnNIzP5PEl5GAxzCkPSHZTocSQMEyv36qv3h6Su_q4L6unn7d_2l-r-4e7bbu5X6GkkFeIAkD3WlLX8x64QqHBO-gYdMo7x0EhVVKwrgHWe98I8Aqk1sIDdgDistou3D7YvZnicLTx1QQ7mHchxGdjY1nu4IyljFMq3YkqqVXQNIz1SDuQUoquL6ybhTXF8Hd2KZt9mONY1je8kYLyRoEoLrG4sHw1Rec_pzJqTo2ZpTFzasx8NFZS10tqKPM_E1oJIWom3gBzopOc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643026783</pqid></control><display><type>article</type><title>Compact Instrumentation for Accurate Detection and Measurement of Glucose Concentration Using Photoacoustic Spectroscopy</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shaikh, Faheem ; Haworth, Noah ; Wells, Riley ; Bishop, Jodi ; Chatterjee, Shre K. ; Banerjee, Sankha ; Laha, Soumyasanta</creator><creatorcontrib>Shaikh, Faheem ; Haworth, Noah ; Wells, Riley ; Bishop, Jodi ; Chatterjee, Shre K. ; Banerjee, Sankha ; Laha, Soumyasanta</creatorcontrib><description><![CDATA[In this work, a novel compact and accurate glucose concentration measurement system is developed using the well-established photoacoustic Near Infra-Red spectroscopy. The proposed in-vitro instrumentation methods are in a small form factor, making it a viable candidate and precursor for an in-vivo non-invasive wearable blood glucose monitoring in the near future. The accuracy comes from the phase sensitive detection of the electrical signal. This detection technique uses an off-the shelf modulator/demodulator integrated circuit configured as a lock-in amplifier to increase the signal to noise ratio multifold. No prior work on photoacoustic spectroscopy, has taken advantage of this detection methodology in such a small form factor. The dimension of the lock-in-amplifier is 13mm <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 10.65mm <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 2.65mm. The maximum linear dimension of the exciting laser is 5.6 mm. The acoustic sensor (transducer) has a dimension of 42mm <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 12mm. Furthermore, the measurement and analyses of the observed data uses multiple stochastic and machine learning techniques to bring out the best correlation fit between the glucose concentration and a specific feature of the electrical signal. With these methods and techniques, a strong correlation was confirmed between the glucose concentration and the amplitude of the electrical signal. The computed correlation coefficient between the signal amplitude and glucose concentration is 97% while the p-value is 5.6E-6. To the best of our knowledge, this is the first work to report photoacoustic spectroscopy for glucose concentration measurement in a compact form, with lock-in amplifier and aided with machine learning algorithms for future application as a wearable device.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3158945</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Amplitudes ; Correlation coefficients ; Form factors ; Glucose ; Glucose monitoring ; In vitro methods and tests ; Instruments ; Integrated circuits ; Integrated optics ; Lock in amplifiers ; lock-in-amplifier ; Machine learning ; Modems ; Monitoring ; non-invasive glucose monitoring ; Optical pulses ; Optical sensors ; Photoacoustic NIR spectroscopy ; Photoacoustic spectroscopy ; Signal detection ; Signal to noise ratio ; Spectroscopy ; Spectrum analysis ; Wearable technology</subject><ispartof>IEEE access, 2022, Vol.10, p.31885-31895</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-cc3889d940ed2d827c398fe8b18b7fee287c07431b681dff638f784993f8cb883</citedby><cites>FETCH-LOGICAL-c408t-cc3889d940ed2d827c398fe8b18b7fee287c07431b681dff638f784993f8cb883</cites><orcidid>0000-0001-9794-2827 ; 0000-0002-8860-4276 ; 0000-0002-6302-788X ; 0000-0003-2698-6229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9733351$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Shaikh, Faheem</creatorcontrib><creatorcontrib>Haworth, Noah</creatorcontrib><creatorcontrib>Wells, Riley</creatorcontrib><creatorcontrib>Bishop, Jodi</creatorcontrib><creatorcontrib>Chatterjee, Shre K.</creatorcontrib><creatorcontrib>Banerjee, Sankha</creatorcontrib><creatorcontrib>Laha, Soumyasanta</creatorcontrib><title>Compact Instrumentation for Accurate Detection and Measurement of Glucose Concentration Using Photoacoustic Spectroscopy</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[In this work, a novel compact and accurate glucose concentration measurement system is developed using the well-established photoacoustic Near Infra-Red spectroscopy. The proposed in-vitro instrumentation methods are in a small form factor, making it a viable candidate and precursor for an in-vivo non-invasive wearable blood glucose monitoring in the near future. The accuracy comes from the phase sensitive detection of the electrical signal. This detection technique uses an off-the shelf modulator/demodulator integrated circuit configured as a lock-in amplifier to increase the signal to noise ratio multifold. No prior work on photoacoustic spectroscopy, has taken advantage of this detection methodology in such a small form factor. The dimension of the lock-in-amplifier is 13mm <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 10.65mm <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 2.65mm. The maximum linear dimension of the exciting laser is 5.6 mm. The acoustic sensor (transducer) has a dimension of 42mm <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 12mm. Furthermore, the measurement and analyses of the observed data uses multiple stochastic and machine learning techniques to bring out the best correlation fit between the glucose concentration and a specific feature of the electrical signal. With these methods and techniques, a strong correlation was confirmed between the glucose concentration and the amplitude of the electrical signal. The computed correlation coefficient between the signal amplitude and glucose concentration is 97% while the p-value is 5.6E-6. To the best of our knowledge, this is the first work to report photoacoustic spectroscopy for glucose concentration measurement in a compact form, with lock-in amplifier and aided with machine learning algorithms for future application as a wearable device.]]></description><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Correlation coefficients</subject><subject>Form factors</subject><subject>Glucose</subject><subject>Glucose monitoring</subject><subject>In vitro methods and tests</subject><subject>Instruments</subject><subject>Integrated circuits</subject><subject>Integrated optics</subject><subject>Lock in amplifiers</subject><subject>lock-in-amplifier</subject><subject>Machine learning</subject><subject>Modems</subject><subject>Monitoring</subject><subject>non-invasive glucose monitoring</subject><subject>Optical pulses</subject><subject>Optical sensors</subject><subject>Photoacoustic NIR spectroscopy</subject><subject>Photoacoustic spectroscopy</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Wearable technology</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1q3DAUhU1oISHNE2QjyHqm-rN1tRzcNB1ISWCatZCvpcTDjOVKMjRvH00cQrWROJzz3StOVV0zumaM6u-btr3d7daccr4WrAYt67PqgrNGr0Qtmi__vc-rq5T2tBwoUq0uqn9tOE4WM9mOKcf56MZs8xBG4kMkG8Q52uzID5cdvst27MlvZ9Mc3clLgid3hxlDcqQNIxYpLvmnNIzP5PEl5GAxzCkPSHZTocSQMEyv36qv3h6Su_q4L6unn7d_2l-r-4e7bbu5X6GkkFeIAkD3WlLX8x64QqHBO-gYdMo7x0EhVVKwrgHWe98I8Aqk1sIDdgDistou3D7YvZnicLTx1QQ7mHchxGdjY1nu4IyljFMq3YkqqVXQNIz1SDuQUoquL6ybhTXF8Hd2KZt9mONY1je8kYLyRoEoLrG4sHw1Rec_pzJqTo2ZpTFzasx8NFZS10tqKPM_E1oJIWom3gBzopOc</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shaikh, Faheem</creator><creator>Haworth, Noah</creator><creator>Wells, Riley</creator><creator>Bishop, Jodi</creator><creator>Chatterjee, Shre K.</creator><creator>Banerjee, Sankha</creator><creator>Laha, Soumyasanta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9794-2827</orcidid><orcidid>https://orcid.org/0000-0002-8860-4276</orcidid><orcidid>https://orcid.org/0000-0002-6302-788X</orcidid><orcidid>https://orcid.org/0000-0003-2698-6229</orcidid></search><sort><creationdate>2022</creationdate><title>Compact Instrumentation for Accurate Detection and Measurement of Glucose Concentration Using Photoacoustic Spectroscopy</title><author>Shaikh, Faheem ; Haworth, Noah ; Wells, Riley ; Bishop, Jodi ; Chatterjee, Shre K. ; Banerjee, Sankha ; Laha, Soumyasanta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-cc3889d940ed2d827c398fe8b18b7fee287c07431b681dff638f784993f8cb883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Correlation coefficients</topic><topic>Form factors</topic><topic>Glucose</topic><topic>Glucose monitoring</topic><topic>In vitro methods and tests</topic><topic>Instruments</topic><topic>Integrated circuits</topic><topic>Integrated optics</topic><topic>Lock in amplifiers</topic><topic>lock-in-amplifier</topic><topic>Machine learning</topic><topic>Modems</topic><topic>Monitoring</topic><topic>non-invasive glucose monitoring</topic><topic>Optical pulses</topic><topic>Optical sensors</topic><topic>Photoacoustic NIR spectroscopy</topic><topic>Photoacoustic spectroscopy</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaikh, Faheem</creatorcontrib><creatorcontrib>Haworth, Noah</creatorcontrib><creatorcontrib>Wells, Riley</creatorcontrib><creatorcontrib>Bishop, Jodi</creatorcontrib><creatorcontrib>Chatterjee, Shre K.</creatorcontrib><creatorcontrib>Banerjee, Sankha</creatorcontrib><creatorcontrib>Laha, Soumyasanta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaikh, Faheem</au><au>Haworth, Noah</au><au>Wells, Riley</au><au>Bishop, Jodi</au><au>Chatterjee, Shre K.</au><au>Banerjee, Sankha</au><au>Laha, Soumyasanta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact Instrumentation for Accurate Detection and Measurement of Glucose Concentration Using Photoacoustic Spectroscopy</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>31885</spage><epage>31895</epage><pages>31885-31895</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[In this work, a novel compact and accurate glucose concentration measurement system is developed using the well-established photoacoustic Near Infra-Red spectroscopy. The proposed in-vitro instrumentation methods are in a small form factor, making it a viable candidate and precursor for an in-vivo non-invasive wearable blood glucose monitoring in the near future. The accuracy comes from the phase sensitive detection of the electrical signal. This detection technique uses an off-the shelf modulator/demodulator integrated circuit configured as a lock-in amplifier to increase the signal to noise ratio multifold. No prior work on photoacoustic spectroscopy, has taken advantage of this detection methodology in such a small form factor. The dimension of the lock-in-amplifier is 13mm <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 10.65mm <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 2.65mm. The maximum linear dimension of the exciting laser is 5.6 mm. The acoustic sensor (transducer) has a dimension of 42mm <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 12mm. Furthermore, the measurement and analyses of the observed data uses multiple stochastic and machine learning techniques to bring out the best correlation fit between the glucose concentration and a specific feature of the electrical signal. With these methods and techniques, a strong correlation was confirmed between the glucose concentration and the amplitude of the electrical signal. The computed correlation coefficient between the signal amplitude and glucose concentration is 97% while the p-value is 5.6E-6. To the best of our knowledge, this is the first work to report photoacoustic spectroscopy for glucose concentration measurement in a compact form, with lock-in amplifier and aided with machine learning algorithms for future application as a wearable device.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3158945</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9794-2827</orcidid><orcidid>https://orcid.org/0000-0002-8860-4276</orcidid><orcidid>https://orcid.org/0000-0002-6302-788X</orcidid><orcidid>https://orcid.org/0000-0003-2698-6229</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.31885-31895 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3158945 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Amplitudes Correlation coefficients Form factors Glucose Glucose monitoring In vitro methods and tests Instruments Integrated circuits Integrated optics Lock in amplifiers lock-in-amplifier Machine learning Modems Monitoring non-invasive glucose monitoring Optical pulses Optical sensors Photoacoustic NIR spectroscopy Photoacoustic spectroscopy Signal detection Signal to noise ratio Spectroscopy Spectrum analysis Wearable technology |
title | Compact Instrumentation for Accurate Detection and Measurement of Glucose Concentration Using Photoacoustic Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20Instrumentation%20for%20Accurate%20Detection%20and%20Measurement%20of%20Glucose%20Concentration%20Using%20Photoacoustic%20Spectroscopy&rft.jtitle=IEEE%20access&rft.au=Shaikh,%20Faheem&rft.date=2022&rft.volume=10&rft.spage=31885&rft.epage=31895&rft.pages=31885-31895&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3158945&rft_dat=%3Cproquest_cross%3E2643026783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643026783&rft_id=info:pmid/&rft_ieee_id=9733351&rft_doaj_id=oai_doaj_org_article_a012004eee2840a786611dc0b84443bd&rfr_iscdi=true |