Attentive Multi-Task Prediction of Atmospheric Particulate Matter: Effect of the COVID-19 Pandemic
Air pollution, especially the continual increase in atmospheric particulate matter (PM), is a global environmental challenge. To reduce the PM concentration, a remarkable amount of machine learning-based research has been proposed. However, increasing the accuracy of the predictions and providing cl...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.10176-10190 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10190 |
---|---|
container_issue | |
container_start_page | 10176 |
container_title | IEEE access |
container_volume | 10 |
creator | Song, Seona Bang, Seongjin Cho, Soyoung Han, Hyungseok Lee, Sangmin |
description | Air pollution, especially the continual increase in atmospheric particulate matter (PM), is a global environmental challenge. To reduce the PM concentration, a remarkable amount of machine learning-based research has been proposed. However, increasing the accuracy of the predictions and providing clear interpretations of the predictions are challenging. In particular, no studies have addressed models that predict and interpret PM before and during the COVID-19 pandemic. In this paper, we present a two-step predictive and explainable model to obtain insights into reducing PM. We first use attentive multi-task learning to predict the air quality of cities. To accurately predict the concentration of particles with sizes of \sim 10~\mu \text{m} or \le 2.5~\mu \text{m} (PM 10 and PM 2.5 , respectively), we demonstrate a performance difference between single-task and multi-task learning, as well as among the state-of-the art methods. The proposed attentive model with multi-task learning outperformed the others in terms of accuracy performance. We then used Shapley additive explanations, a representative explainable artificial intelligence framework, to interpret and determine the significance of features for predicting PM 10 and PM 2.5 . We demonstrated the superiority of the proposed approach in predicting and explaining both PM 10 and PM 2.5 concentrations, and observed a statistically significant difference in air pollution before and during the COVID-19 pandemic. |
doi_str_mv | 10.1109/ACCESS.2022.3144588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3144588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9684856</ieee_id><doaj_id>oai_doaj_org_article_9227a8e834414ce7b7c0ceb83041d9aa</doaj_id><sourcerecordid>2623469609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-da2189b064a35d5de8f32c888a4cc30a9a0d5c1bee49522282ec3f1ee86c0c3</originalsourceid><addsrcrecordid>eNpNkU9rAjEQxZfSQsX6Cbws9Lw2_zab9CZb2woWBaXXkM3O1lg1NhsL_faNrpTOZYbh_d4MvCQZYjTCGMmHcVlOlssRQYSMKGYsF-Iq6RHMZUZzyq__zbfJoG03KJaIq7zoJdU4BNgH-w3p23EbbLbS7We68FBbE6zbp65Jx2Hn2sMavDXpQvtgzXGrQwR0ZP1jOmkaMOGkDGtIy_n79CnDMkr3NeysuUtuGr1tYXDp_WT5PFmVr9ls_jItx7PMsIKFrNYEC1khzjTN67wG0VBihBCaGUORlhrVucEVAJM5IUQQMLTBAIIbZGg_mXautdMbdfB2p_2Pctqq88L5D3V-fQtKElJoAYIyhpmBoiqiAVSCIoZrqXX0uu-8Dt59HaENauOOfh-fV4QTyrjkSEYV7VTGu7b10PxdxUidklFdMuqUjLokE6lhR1kA-CMkF0zknP4CHJ6JCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623469609</pqid></control><display><type>article</type><title>Attentive Multi-Task Prediction of Atmospheric Particulate Matter: Effect of the COVID-19 Pandemic</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Song, Seona ; Bang, Seongjin ; Cho, Soyoung ; Han, Hyungseok ; Lee, Sangmin</creator><creatorcontrib>Song, Seona ; Bang, Seongjin ; Cho, Soyoung ; Han, Hyungseok ; Lee, Sangmin</creatorcontrib><description><![CDATA[Air pollution, especially the continual increase in atmospheric particulate matter (PM), is a global environmental challenge. To reduce the PM concentration, a remarkable amount of machine learning-based research has been proposed. However, increasing the accuracy of the predictions and providing clear interpretations of the predictions are challenging. In particular, no studies have addressed models that predict and interpret PM before and during the COVID-19 pandemic. In this paper, we present a two-step predictive and explainable model to obtain insights into reducing PM. We first use attentive multi-task learning to predict the air quality of cities. To accurately predict the concentration of particles with sizes of <inline-formula> <tex-math notation="LaTeX">\sim 10~\mu \text{m} </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">\le 2.5~\mu \text{m} </tex-math></inline-formula> (PM 10 and PM 2.5 , respectively), we demonstrate a performance difference between single-task and multi-task learning, as well as among the state-of-the art methods. The proposed attentive model with multi-task learning outperformed the others in terms of accuracy performance. We then used Shapley additive explanations, a representative explainable artificial intelligence framework, to interpret and determine the significance of features for predicting PM 10 and PM 2.5 . We demonstrated the superiority of the proposed approach in predicting and explaining both PM 10 and PM 2.5 concentrations, and observed a statistically significant difference in air pollution before and during the COVID-19 pandemic.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3144588</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Air pollution ; Air quality ; Artificial intelligence ; Atmospheric modeling ; Atmospheric models ; attentive multi-task learning ; Coronaviruses ; COVID-19 ; Explainable artificial intelligence ; Machine learning ; Multitasking ; Pandemics ; Particulate emissions ; particulate matter ; Predictive models ; Shapley value ; surrogate model ; Urban areas</subject><ispartof>IEEE access, 2022, Vol.10, p.10176-10190</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-da2189b064a35d5de8f32c888a4cc30a9a0d5c1bee49522282ec3f1ee86c0c3</citedby><cites>FETCH-LOGICAL-c474t-da2189b064a35d5de8f32c888a4cc30a9a0d5c1bee49522282ec3f1ee86c0c3</cites><orcidid>0000-0002-5215-2546 ; 0000-0001-6995-4687 ; 0000-0003-4138-4197 ; 0000-0003-2213-8839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9684856$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Song, Seona</creatorcontrib><creatorcontrib>Bang, Seongjin</creatorcontrib><creatorcontrib>Cho, Soyoung</creatorcontrib><creatorcontrib>Han, Hyungseok</creatorcontrib><creatorcontrib>Lee, Sangmin</creatorcontrib><title>Attentive Multi-Task Prediction of Atmospheric Particulate Matter: Effect of the COVID-19 Pandemic</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Air pollution, especially the continual increase in atmospheric particulate matter (PM), is a global environmental challenge. To reduce the PM concentration, a remarkable amount of machine learning-based research has been proposed. However, increasing the accuracy of the predictions and providing clear interpretations of the predictions are challenging. In particular, no studies have addressed models that predict and interpret PM before and during the COVID-19 pandemic. In this paper, we present a two-step predictive and explainable model to obtain insights into reducing PM. We first use attentive multi-task learning to predict the air quality of cities. To accurately predict the concentration of particles with sizes of <inline-formula> <tex-math notation="LaTeX">\sim 10~\mu \text{m} </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">\le 2.5~\mu \text{m} </tex-math></inline-formula> (PM 10 and PM 2.5 , respectively), we demonstrate a performance difference between single-task and multi-task learning, as well as among the state-of-the art methods. The proposed attentive model with multi-task learning outperformed the others in terms of accuracy performance. We then used Shapley additive explanations, a representative explainable artificial intelligence framework, to interpret and determine the significance of features for predicting PM 10 and PM 2.5 . We demonstrated the superiority of the proposed approach in predicting and explaining both PM 10 and PM 2.5 concentrations, and observed a statistically significant difference in air pollution before and during the COVID-19 pandemic.]]></description><subject>Accuracy</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Artificial intelligence</subject><subject>Atmospheric modeling</subject><subject>Atmospheric models</subject><subject>attentive multi-task learning</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Explainable artificial intelligence</subject><subject>Machine learning</subject><subject>Multitasking</subject><subject>Pandemics</subject><subject>Particulate emissions</subject><subject>particulate matter</subject><subject>Predictive models</subject><subject>Shapley value</subject><subject>surrogate model</subject><subject>Urban areas</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9rAjEQxZfSQsX6Cbws9Lw2_zab9CZb2woWBaXXkM3O1lg1NhsL_faNrpTOZYbh_d4MvCQZYjTCGMmHcVlOlssRQYSMKGYsF-Iq6RHMZUZzyq__zbfJoG03KJaIq7zoJdU4BNgH-w3p23EbbLbS7We68FBbE6zbp65Jx2Hn2sMavDXpQvtgzXGrQwR0ZP1jOmkaMOGkDGtIy_n79CnDMkr3NeysuUtuGr1tYXDp_WT5PFmVr9ls_jItx7PMsIKFrNYEC1khzjTN67wG0VBihBCaGUORlhrVucEVAJM5IUQQMLTBAIIbZGg_mXautdMbdfB2p_2Pctqq88L5D3V-fQtKElJoAYIyhpmBoiqiAVSCIoZrqXX0uu-8Dt59HaENauOOfh-fV4QTyrjkSEYV7VTGu7b10PxdxUidklFdMuqUjLokE6lhR1kA-CMkF0zknP4CHJ6JCA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Song, Seona</creator><creator>Bang, Seongjin</creator><creator>Cho, Soyoung</creator><creator>Han, Hyungseok</creator><creator>Lee, Sangmin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5215-2546</orcidid><orcidid>https://orcid.org/0000-0001-6995-4687</orcidid><orcidid>https://orcid.org/0000-0003-4138-4197</orcidid><orcidid>https://orcid.org/0000-0003-2213-8839</orcidid></search><sort><creationdate>2022</creationdate><title>Attentive Multi-Task Prediction of Atmospheric Particulate Matter: Effect of the COVID-19 Pandemic</title><author>Song, Seona ; Bang, Seongjin ; Cho, Soyoung ; Han, Hyungseok ; Lee, Sangmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-da2189b064a35d5de8f32c888a4cc30a9a0d5c1bee49522282ec3f1ee86c0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Artificial intelligence</topic><topic>Atmospheric modeling</topic><topic>Atmospheric models</topic><topic>attentive multi-task learning</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Explainable artificial intelligence</topic><topic>Machine learning</topic><topic>Multitasking</topic><topic>Pandemics</topic><topic>Particulate emissions</topic><topic>particulate matter</topic><topic>Predictive models</topic><topic>Shapley value</topic><topic>surrogate model</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Seona</creatorcontrib><creatorcontrib>Bang, Seongjin</creatorcontrib><creatorcontrib>Cho, Soyoung</creatorcontrib><creatorcontrib>Han, Hyungseok</creatorcontrib><creatorcontrib>Lee, Sangmin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Seona</au><au>Bang, Seongjin</au><au>Cho, Soyoung</au><au>Han, Hyungseok</au><au>Lee, Sangmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attentive Multi-Task Prediction of Atmospheric Particulate Matter: Effect of the COVID-19 Pandemic</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>10176</spage><epage>10190</epage><pages>10176-10190</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Air pollution, especially the continual increase in atmospheric particulate matter (PM), is a global environmental challenge. To reduce the PM concentration, a remarkable amount of machine learning-based research has been proposed. However, increasing the accuracy of the predictions and providing clear interpretations of the predictions are challenging. In particular, no studies have addressed models that predict and interpret PM before and during the COVID-19 pandemic. In this paper, we present a two-step predictive and explainable model to obtain insights into reducing PM. We first use attentive multi-task learning to predict the air quality of cities. To accurately predict the concentration of particles with sizes of <inline-formula> <tex-math notation="LaTeX">\sim 10~\mu \text{m} </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">\le 2.5~\mu \text{m} </tex-math></inline-formula> (PM 10 and PM 2.5 , respectively), we demonstrate a performance difference between single-task and multi-task learning, as well as among the state-of-the art methods. The proposed attentive model with multi-task learning outperformed the others in terms of accuracy performance. We then used Shapley additive explanations, a representative explainable artificial intelligence framework, to interpret and determine the significance of features for predicting PM 10 and PM 2.5 . We demonstrated the superiority of the proposed approach in predicting and explaining both PM 10 and PM 2.5 concentrations, and observed a statistically significant difference in air pollution before and during the COVID-19 pandemic.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3144588</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5215-2546</orcidid><orcidid>https://orcid.org/0000-0001-6995-4687</orcidid><orcidid>https://orcid.org/0000-0003-4138-4197</orcidid><orcidid>https://orcid.org/0000-0003-2213-8839</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.10176-10190 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3144588 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Air pollution Air quality Artificial intelligence Atmospheric modeling Atmospheric models attentive multi-task learning Coronaviruses COVID-19 Explainable artificial intelligence Machine learning Multitasking Pandemics Particulate emissions particulate matter Predictive models Shapley value surrogate model Urban areas |
title | Attentive Multi-Task Prediction of Atmospheric Particulate Matter: Effect of the COVID-19 Pandemic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attentive%20Multi-Task%20Prediction%20of%20Atmospheric%20Particulate%20Matter:%20Effect%20of%20the%20COVID-19%20Pandemic&rft.jtitle=IEEE%20access&rft.au=Song,%20Seona&rft.date=2022&rft.volume=10&rft.spage=10176&rft.epage=10190&rft.pages=10176-10190&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3144588&rft_dat=%3Cproquest_cross%3E2623469609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623469609&rft_id=info:pmid/&rft_ieee_id=9684856&rft_doaj_id=oai_doaj_org_article_9227a8e834414ce7b7c0ceb83041d9aa&rfr_iscdi=true |