Progressive Entity Matching via Cost Benefit Analysis
Entity matching (EM) is a fundamental problem in data preprocessing, and is a long running topic in big data analytics and mining communities. In big data era, (nearly) real-time data applications become popular, and call for progressive EM, which produces as many match pairs as possible in very lim...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.3979-3989 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3989 |
---|---|
container_issue | |
container_start_page | 3979 |
container_title | IEEE access |
container_volume | 10 |
creator | Sun, Chenchen Hou, Zhijiang Shen, Derong Nie, Tiezheng |
description | Entity matching (EM) is a fundamental problem in data preprocessing, and is a long running topic in big data analytics and mining communities. In big data era, (nearly) real-time data applications become popular, and call for progressive EM, which produces as many match pairs as possible in very limited time. Previous progressive EM focus on memory based solutions, but disk based solutions are necessary when dirty datasets cannot be fully loaded into memory. To this end, we propose a cost benefit analysis based progressive EM approach, which partitions data according to coarse clustering results and then iteratively schedules data partitions in a greedy way for high progressive resolution. At first, based on estimated record pair similarities, records are fast coarsely clustered; then, record clusters with near average similarities are greedily distributed to the same partitions, and data partitions are cached. After that, cost model is defined with time and space constrains, and benefit model is defined with expected resolution results. On the basis of the cost benefit model, a greedy approximate method is proposed to effectively schedule data for high progressiveness of EM. Finally, we implement extensive experiments over several datasets to evaluate our approach, and show its advantages over existing works. |
doi_str_mv | 10.1109/ACCESS.2021.3139987 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3139987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9667382</ieee_id><doaj_id>oai_doaj_org_article_b56c7db254a64f368cb3e4297cf8f6e4</doaj_id><sourcerecordid>2619589940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-63f12986454046b9294f2baa885a9bcb6131eb302bf263cf5c6b5b813184e8093</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGo_QS8Lnrfm_ybHulQtVBSq55CkSU2pm5psC_32bt1SnMsMj3lvmB8AYwQnCEH5MK3r2XI5wRCjCUFESlFdgQFGXJaEEX79b74Fo5w3sCvRSawaAPae4jq5nMPBFbOmDe2xeNWt_QrNujgEXdQxt8Wja5wPbTFt9PaYQ74DN15vsxud-xB8Ps0-6pdy8fY8r6eL0hIm2pITj7AUnDIKKTcSS-qx0VoIpqWxhiOCnCEQG485sZ5ZbpgRnSqoE1CSIZj3uauoN2qXwrdORxV1UH9CTGulUxvs1inDuK1WBjOqOfWEC2uIo1hW1gvPHe2y7vusXYo_e5dbtYn71D2UFeZIMiElhd0W6bdsijkn5y9XEVQn3KrHrU641Rl35xr3ruCcuzgk5xURmPwC6gt5ZQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619589940</pqid></control><display><type>article</type><title>Progressive Entity Matching via Cost Benefit Analysis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sun, Chenchen ; Hou, Zhijiang ; Shen, Derong ; Nie, Tiezheng</creator><creatorcontrib>Sun, Chenchen ; Hou, Zhijiang ; Shen, Derong ; Nie, Tiezheng</creatorcontrib><description>Entity matching (EM) is a fundamental problem in data preprocessing, and is a long running topic in big data analytics and mining communities. In big data era, (nearly) real-time data applications become popular, and call for progressive EM, which produces as many match pairs as possible in very limited time. Previous progressive EM focus on memory based solutions, but disk based solutions are necessary when dirty datasets cannot be fully loaded into memory. To this end, we propose a cost benefit analysis based progressive EM approach, which partitions data according to coarse clustering results and then iteratively schedules data partitions in a greedy way for high progressive resolution. At first, based on estimated record pair similarities, records are fast coarsely clustered; then, record clusters with near average similarities are greedily distributed to the same partitions, and data partitions are cached. After that, cost model is defined with time and space constrains, and benefit model is defined with expected resolution results. On the basis of the cost benefit model, a greedy approximate method is proposed to effectively schedule data for high progressiveness of EM. Finally, we implement extensive experiments over several datasets to evaluate our approach, and show its advantages over existing works.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3139987</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Approximation ; Big Data ; Clustering ; Cost benefit analysis ; cost benefit model ; Data integration ; data partitioning ; Datasets ; Entity matching ; Estimation ; Matching ; Partitioning algorithms ; progressive ; Schedules ; Scheduling ; Similarity</subject><ispartof>IEEE access, 2022, Vol.10, p.3979-3989</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-63f12986454046b9294f2baa885a9bcb6131eb302bf263cf5c6b5b813184e8093</cites><orcidid>0000-0002-9990-0425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9667382$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Sun, Chenchen</creatorcontrib><creatorcontrib>Hou, Zhijiang</creatorcontrib><creatorcontrib>Shen, Derong</creatorcontrib><creatorcontrib>Nie, Tiezheng</creatorcontrib><title>Progressive Entity Matching via Cost Benefit Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Entity matching (EM) is a fundamental problem in data preprocessing, and is a long running topic in big data analytics and mining communities. In big data era, (nearly) real-time data applications become popular, and call for progressive EM, which produces as many match pairs as possible in very limited time. Previous progressive EM focus on memory based solutions, but disk based solutions are necessary when dirty datasets cannot be fully loaded into memory. To this end, we propose a cost benefit analysis based progressive EM approach, which partitions data according to coarse clustering results and then iteratively schedules data partitions in a greedy way for high progressive resolution. At first, based on estimated record pair similarities, records are fast coarsely clustered; then, record clusters with near average similarities are greedily distributed to the same partitions, and data partitions are cached. After that, cost model is defined with time and space constrains, and benefit model is defined with expected resolution results. On the basis of the cost benefit model, a greedy approximate method is proposed to effectively schedule data for high progressiveness of EM. Finally, we implement extensive experiments over several datasets to evaluate our approach, and show its advantages over existing works.</description><subject>Approximation</subject><subject>Big Data</subject><subject>Clustering</subject><subject>Cost benefit analysis</subject><subject>cost benefit model</subject><subject>Data integration</subject><subject>data partitioning</subject><subject>Datasets</subject><subject>Entity matching</subject><subject>Estimation</subject><subject>Matching</subject><subject>Partitioning algorithms</subject><subject>progressive</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Similarity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9LAzEQxYMoWGo_QS8Lnrfm_ybHulQtVBSq55CkSU2pm5psC_32bt1SnMsMj3lvmB8AYwQnCEH5MK3r2XI5wRCjCUFESlFdgQFGXJaEEX79b74Fo5w3sCvRSawaAPae4jq5nMPBFbOmDe2xeNWt_QrNujgEXdQxt8Wja5wPbTFt9PaYQ74DN15vsxud-xB8Ps0-6pdy8fY8r6eL0hIm2pITj7AUnDIKKTcSS-qx0VoIpqWxhiOCnCEQG485sZ5ZbpgRnSqoE1CSIZj3uauoN2qXwrdORxV1UH9CTGulUxvs1inDuK1WBjOqOfWEC2uIo1hW1gvPHe2y7vusXYo_e5dbtYn71D2UFeZIMiElhd0W6bdsijkn5y9XEVQn3KrHrU641Rl35xr3ruCcuzgk5xURmPwC6gt5ZQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sun, Chenchen</creator><creator>Hou, Zhijiang</creator><creator>Shen, Derong</creator><creator>Nie, Tiezheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9990-0425</orcidid></search><sort><creationdate>2022</creationdate><title>Progressive Entity Matching via Cost Benefit Analysis</title><author>Sun, Chenchen ; Hou, Zhijiang ; Shen, Derong ; Nie, Tiezheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-63f12986454046b9294f2baa885a9bcb6131eb302bf263cf5c6b5b813184e8093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Big Data</topic><topic>Clustering</topic><topic>Cost benefit analysis</topic><topic>cost benefit model</topic><topic>Data integration</topic><topic>data partitioning</topic><topic>Datasets</topic><topic>Entity matching</topic><topic>Estimation</topic><topic>Matching</topic><topic>Partitioning algorithms</topic><topic>progressive</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Chenchen</creatorcontrib><creatorcontrib>Hou, Zhijiang</creatorcontrib><creatorcontrib>Shen, Derong</creatorcontrib><creatorcontrib>Nie, Tiezheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Chenchen</au><au>Hou, Zhijiang</au><au>Shen, Derong</au><au>Nie, Tiezheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progressive Entity Matching via Cost Benefit Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>3979</spage><epage>3989</epage><pages>3979-3989</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Entity matching (EM) is a fundamental problem in data preprocessing, and is a long running topic in big data analytics and mining communities. In big data era, (nearly) real-time data applications become popular, and call for progressive EM, which produces as many match pairs as possible in very limited time. Previous progressive EM focus on memory based solutions, but disk based solutions are necessary when dirty datasets cannot be fully loaded into memory. To this end, we propose a cost benefit analysis based progressive EM approach, which partitions data according to coarse clustering results and then iteratively schedules data partitions in a greedy way for high progressive resolution. At first, based on estimated record pair similarities, records are fast coarsely clustered; then, record clusters with near average similarities are greedily distributed to the same partitions, and data partitions are cached. After that, cost model is defined with time and space constrains, and benefit model is defined with expected resolution results. On the basis of the cost benefit model, a greedy approximate method is proposed to effectively schedule data for high progressiveness of EM. Finally, we implement extensive experiments over several datasets to evaluate our approach, and show its advantages over existing works.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3139987</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9990-0425</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.3979-3989 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3139987 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Big Data Clustering Cost benefit analysis cost benefit model Data integration data partitioning Datasets Entity matching Estimation Matching Partitioning algorithms progressive Schedules Scheduling Similarity |
title | Progressive Entity Matching via Cost Benefit Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progressive%20Entity%20Matching%20via%20Cost%20Benefit%20Analysis&rft.jtitle=IEEE%20access&rft.au=Sun,%20Chenchen&rft.date=2022&rft.volume=10&rft.spage=3979&rft.epage=3989&rft.pages=3979-3989&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3139987&rft_dat=%3Cproquest_cross%3E2619589940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619589940&rft_id=info:pmid/&rft_ieee_id=9667382&rft_doaj_id=oai_doaj_org_article_b56c7db254a64f368cb3e4297cf8f6e4&rfr_iscdi=true |