Mackerel Fat Content Estimation Using RGB and Depth Images

We propose a method for estimating the fat content of mackerels from their images. The market value of fish varies greatly depending on the fat content. For example, mackerels with high-fat content are a high priority for business transactions in Japanese fisheries. The fat content is commonly measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.164060-164069
Hauptverfasser: Sano, Shuya, Miyazaki, Tomo, Sugaya, Yoshihiro, Sekiguchi, Naohiro, Omachi, Shinichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164069
container_issue
container_start_page 164060
container_title IEEE access
container_volume 9
creator Sano, Shuya
Miyazaki, Tomo
Sugaya, Yoshihiro
Sekiguchi, Naohiro
Omachi, Shinichiro
description We propose a method for estimating the fat content of mackerels from their images. The market value of fish varies greatly depending on the fat content. For example, mackerels with high-fat content are a high priority for business transactions in Japanese fisheries. The fat content is commonly measured manually with special equipment using the near-infrared spectroscopy, which increases costs and reduces productivity. It is ideal to estimate the fat content automatically using inexpensive equipment such as ordinary cameras. However, fat content estimation from fish images is a challenging task because the difference in fat content appears only as a slight difference in their appearance. To tackle this problem, we propose to use not only RGB images but also depth images to utilize shape information as well as the textures. To detect subtle differences in texture and shape, we propose a convolutional neural network that extracts and concatenates features from part images, such as the head, body, and tail of a mackerel image. Color-texture and three-dimensional shape features extracted from RGB and depth images, respectively, are combined to estimate the fat content. Experimental results show that the proposed method estimated fat content with 2.25 points at mean absolute error.
doi_str_mv 10.1109/ACCESS.2021.3134260
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3134260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9645569</ieee_id><doaj_id>oai_doaj_org_article_156806047afe4525890efd28d5561f45</doaj_id><sourcerecordid>2610983574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-d309b3a89fbd0feb4bae1a8544f529d0b33f9e9c2c1a5a12146bd7b29cd9dd1f3</originalsourceid><addsrcrecordid>eNpNkE9PwkAQxRujiQT5BFyaeAb3f7vesAKSYExEzpttdxaL0OLucvDbu1hCnMtMJvPem_ySZIjRGGMkHyZFMV2txgQRPKaYMiLQVdIjWMgR5VRc_5tvk4H3WxQrjyue9ZLHV119gYNdOtMhLdomQBPSqQ_1Xoe6bdK1r5tN-j5_SnVj0mc4hM90sdcb8HfJjdU7D4Nz7yfr2fSjeBkt3-aLYrIcVYywMDIUyZLqXNrSIAslKzVgnXPGLCfSoJJSK0FWpMKaa0wwE6XJSiIrI43BlvaTRedrWr1VBxc_cz-q1bX6W7Ruo7QLdbUDhbnIkUAs0xYYJzyXCKwhueFcYMt49LrvvA6u_T6CD2rbHl0T31dERJg55RmLV7S7qlzrvQN7ScVInZirjrk6MVdn5lE17FQ1AFwUUrAYLukvVCl60A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610983574</pqid></control><display><type>article</type><title>Mackerel Fat Content Estimation Using RGB and Depth Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sano, Shuya ; Miyazaki, Tomo ; Sugaya, Yoshihiro ; Sekiguchi, Naohiro ; Omachi, Shinichiro</creator><creatorcontrib>Sano, Shuya ; Miyazaki, Tomo ; Sugaya, Yoshihiro ; Sekiguchi, Naohiro ; Omachi, Shinichiro</creatorcontrib><description>We propose a method for estimating the fat content of mackerels from their images. The market value of fish varies greatly depending on the fat content. For example, mackerels with high-fat content are a high priority for business transactions in Japanese fisheries. The fat content is commonly measured manually with special equipment using the near-infrared spectroscopy, which increases costs and reduces productivity. It is ideal to estimate the fat content automatically using inexpensive equipment such as ordinary cameras. However, fat content estimation from fish images is a challenging task because the difference in fat content appears only as a slight difference in their appearance. To tackle this problem, we propose to use not only RGB images but also depth images to utilize shape information as well as the textures. To detect subtle differences in texture and shape, we propose a convolutional neural network that extracts and concatenates features from part images, such as the head, body, and tail of a mackerel image. Color-texture and three-dimensional shape features extracted from RGB and depth images, respectively, are combined to estimate the fat content. Experimental results show that the proposed method estimated fat content with 2.25 points at mean absolute error.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3134260</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Cameras ; Color imagery ; Convolutional neural networks ; depth image ; Estimation ; fat content estimation ; Fats ; Feature extraction ; Fish ; Fish image analysis ; Fisheries ; fishery industry ; Infrared spectra ; Mackerel ; Market value ; Near infrared radiation ; neural network ; RGB image ; Shape ; Texture ; Training</subject><ispartof>IEEE access, 2021, Vol.9, p.164060-164069</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c424t-d309b3a89fbd0feb4bae1a8544f529d0b33f9e9c2c1a5a12146bd7b29cd9dd1f3</cites><orcidid>0000-0003-1696-3517 ; 0000-0003-3704-4309 ; 0000-0001-5205-0542 ; 0000-0002-8822-3350 ; 0000-0001-7706-9995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9645569$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Sano, Shuya</creatorcontrib><creatorcontrib>Miyazaki, Tomo</creatorcontrib><creatorcontrib>Sugaya, Yoshihiro</creatorcontrib><creatorcontrib>Sekiguchi, Naohiro</creatorcontrib><creatorcontrib>Omachi, Shinichiro</creatorcontrib><title>Mackerel Fat Content Estimation Using RGB and Depth Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>We propose a method for estimating the fat content of mackerels from their images. The market value of fish varies greatly depending on the fat content. For example, mackerels with high-fat content are a high priority for business transactions in Japanese fisheries. The fat content is commonly measured manually with special equipment using the near-infrared spectroscopy, which increases costs and reduces productivity. It is ideal to estimate the fat content automatically using inexpensive equipment such as ordinary cameras. However, fat content estimation from fish images is a challenging task because the difference in fat content appears only as a slight difference in their appearance. To tackle this problem, we propose to use not only RGB images but also depth images to utilize shape information as well as the textures. To detect subtle differences in texture and shape, we propose a convolutional neural network that extracts and concatenates features from part images, such as the head, body, and tail of a mackerel image. Color-texture and three-dimensional shape features extracted from RGB and depth images, respectively, are combined to estimate the fat content. Experimental results show that the proposed method estimated fat content with 2.25 points at mean absolute error.</description><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>Color imagery</subject><subject>Convolutional neural networks</subject><subject>depth image</subject><subject>Estimation</subject><subject>fat content estimation</subject><subject>Fats</subject><subject>Feature extraction</subject><subject>Fish</subject><subject>Fish image analysis</subject><subject>Fisheries</subject><subject>fishery industry</subject><subject>Infrared spectra</subject><subject>Mackerel</subject><subject>Market value</subject><subject>Near infrared radiation</subject><subject>neural network</subject><subject>RGB image</subject><subject>Shape</subject><subject>Texture</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9PwkAQxRujiQT5BFyaeAb3f7vesAKSYExEzpttdxaL0OLucvDbu1hCnMtMJvPem_ySZIjRGGMkHyZFMV2txgQRPKaYMiLQVdIjWMgR5VRc_5tvk4H3WxQrjyue9ZLHV119gYNdOtMhLdomQBPSqQ_1Xoe6bdK1r5tN-j5_SnVj0mc4hM90sdcb8HfJjdU7D4Nz7yfr2fSjeBkt3-aLYrIcVYywMDIUyZLqXNrSIAslKzVgnXPGLCfSoJJSK0FWpMKaa0wwE6XJSiIrI43BlvaTRedrWr1VBxc_cz-q1bX6W7Ruo7QLdbUDhbnIkUAs0xYYJzyXCKwhueFcYMt49LrvvA6u_T6CD2rbHl0T31dERJg55RmLV7S7qlzrvQN7ScVInZirjrk6MVdn5lE17FQ1AFwUUrAYLukvVCl60A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sano, Shuya</creator><creator>Miyazaki, Tomo</creator><creator>Sugaya, Yoshihiro</creator><creator>Sekiguchi, Naohiro</creator><creator>Omachi, Shinichiro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1696-3517</orcidid><orcidid>https://orcid.org/0000-0003-3704-4309</orcidid><orcidid>https://orcid.org/0000-0001-5205-0542</orcidid><orcidid>https://orcid.org/0000-0002-8822-3350</orcidid><orcidid>https://orcid.org/0000-0001-7706-9995</orcidid></search><sort><creationdate>2021</creationdate><title>Mackerel Fat Content Estimation Using RGB and Depth Images</title><author>Sano, Shuya ; Miyazaki, Tomo ; Sugaya, Yoshihiro ; Sekiguchi, Naohiro ; Omachi, Shinichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-d309b3a89fbd0feb4bae1a8544f529d0b33f9e9c2c1a5a12146bd7b29cd9dd1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>Color imagery</topic><topic>Convolutional neural networks</topic><topic>depth image</topic><topic>Estimation</topic><topic>fat content estimation</topic><topic>Fats</topic><topic>Feature extraction</topic><topic>Fish</topic><topic>Fish image analysis</topic><topic>Fisheries</topic><topic>fishery industry</topic><topic>Infrared spectra</topic><topic>Mackerel</topic><topic>Market value</topic><topic>Near infrared radiation</topic><topic>neural network</topic><topic>RGB image</topic><topic>Shape</topic><topic>Texture</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sano, Shuya</creatorcontrib><creatorcontrib>Miyazaki, Tomo</creatorcontrib><creatorcontrib>Sugaya, Yoshihiro</creatorcontrib><creatorcontrib>Sekiguchi, Naohiro</creatorcontrib><creatorcontrib>Omachi, Shinichiro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sano, Shuya</au><au>Miyazaki, Tomo</au><au>Sugaya, Yoshihiro</au><au>Sekiguchi, Naohiro</au><au>Omachi, Shinichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mackerel Fat Content Estimation Using RGB and Depth Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>164060</spage><epage>164069</epage><pages>164060-164069</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We propose a method for estimating the fat content of mackerels from their images. The market value of fish varies greatly depending on the fat content. For example, mackerels with high-fat content are a high priority for business transactions in Japanese fisheries. The fat content is commonly measured manually with special equipment using the near-infrared spectroscopy, which increases costs and reduces productivity. It is ideal to estimate the fat content automatically using inexpensive equipment such as ordinary cameras. However, fat content estimation from fish images is a challenging task because the difference in fat content appears only as a slight difference in their appearance. To tackle this problem, we propose to use not only RGB images but also depth images to utilize shape information as well as the textures. To detect subtle differences in texture and shape, we propose a convolutional neural network that extracts and concatenates features from part images, such as the head, body, and tail of a mackerel image. Color-texture and three-dimensional shape features extracted from RGB and depth images, respectively, are combined to estimate the fat content. Experimental results show that the proposed method estimated fat content with 2.25 points at mean absolute error.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3134260</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1696-3517</orcidid><orcidid>https://orcid.org/0000-0003-3704-4309</orcidid><orcidid>https://orcid.org/0000-0001-5205-0542</orcidid><orcidid>https://orcid.org/0000-0002-8822-3350</orcidid><orcidid>https://orcid.org/0000-0001-7706-9995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.164060-164069
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3134260
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Cameras
Color imagery
Convolutional neural networks
depth image
Estimation
fat content estimation
Fats
Feature extraction
Fish
Fish image analysis
Fisheries
fishery industry
Infrared spectra
Mackerel
Market value
Near infrared radiation
neural network
RGB image
Shape
Texture
Training
title Mackerel Fat Content Estimation Using RGB and Depth Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mackerel%20Fat%20Content%20Estimation%20Using%20RGB%20and%20Depth%20Images&rft.jtitle=IEEE%20access&rft.au=Sano,%20Shuya&rft.date=2021&rft.volume=9&rft.spage=164060&rft.epage=164069&rft.pages=164060-164069&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3134260&rft_dat=%3Cproquest_cross%3E2610983574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610983574&rft_id=info:pmid/&rft_ieee_id=9645569&rft_doaj_id=oai_doaj_org_article_156806047afe4525890efd28d5561f45&rfr_iscdi=true