Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations
Alarm flood similarity analysis (AFSA) methods are frequently used as a primary step for root-cause analysis, alarm flood pattern mining, and online operator support. AFSA methods have been promoted in several research activities in recent years. However, addressing an often-observed ambiguity of th...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.154965-154974 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154974 |
---|---|
container_issue | |
container_start_page | 154965 |
container_title | IEEE access |
container_volume | 9 |
creator | Manca, Gianluca Dix, Marcel Fay, Alexander |
description | Alarm flood similarity analysis (AFSA) methods are frequently used as a primary step for root-cause analysis, alarm flood pattern mining, and online operator support. AFSA methods have been promoted in several research activities in recent years. However, addressing an often-observed ambiguity of the order of alarms and the annunciation of irrelevant alarms in otherwise similar alarm subsequences remains a challenging task. To address and solve these limitations, this paper presents a novel AFSA method that uses alarm series as input to two extended term frequency-inverse document frequency (TF-IDF)-based clustering approaches, a dimensionality reduction technique, and a novel outlier validation. The method proposed here utilizes both characteristic alarm variables and their coactivations, thus, emphasizing the dynamic properties of alarms to a greater extent. Our method is compared to three relevant methods from the literature. The effectiveness and performance of the examined methods are illustrated by means of an openly accessible dataset based on the "Tennessee-Eastman-Process". It is shown that the integration of alarm series data improves the overall performance and robustness of the AFSA. Furthermore, the clustering results are less influenced by the ambiguity of the order of alarms and irrelevant alarms, thus overcoming a persistent challenge in alarm management research. |
doi_str_mv | 10.1109/ACCESS.2021.3128695 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3128695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9617607</ieee_id><doaj_id>oai_doaj_org_article_141d40dec0854c39b15ace30a9ac041e</doaj_id><sourcerecordid>2601646937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4ef0f79eed0ecb2941e1e7a65e93fa844386b72b3e875bc21c2a710a76adb3533</originalsourceid><addsrcrecordid>eNpNkc9q3DAQxk1poCHNE-Qi6Hm3-mfJOi4mbRYCPTg5i7E8TrV4rVTyFvIAfe_O1kuoLtIM8_tmRl9V3Qm-FYK7r7u2ve-6reRSbJWQjXH1h-paCuM2qlbm43_vT9VtKQdOp6FUba-rP-10KgvmOL-wNLIuHuMEmT3EsqQcA0xsR_GRdae-4K8TzgELizPbzwNxOVJBm-Ylp4l1byR0LOy5nMUuGCkTAPPA2p-QIZxblSUGoiiIv2GJaS6fq6sRpoK3l_umev52_9Q-bB5_fN-3u8dN0LxZNhpHPlqHOHAMvXRaoEALpkanRmi0Vo3prewVNrbugxRBghUcrIGhp_3VTbVfdYcEB_-a4xHym08Q_b9Eyi8eMk03oRdaDJoPGHhT66BcL2oIqDg4CJwak9aXVes1J_qYsvhDOuWZxvfScGG0ccpSlVqrQk6lZBzfuwruz_b51T5_ts9f7CPqbqUiIr4TzghruFV_AfrUmKg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601646937</pqid></control><display><type>article</type><title>Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Manca, Gianluca ; Dix, Marcel ; Fay, Alexander</creator><creatorcontrib>Manca, Gianluca ; Dix, Marcel ; Fay, Alexander</creatorcontrib><description>Alarm flood similarity analysis (AFSA) methods are frequently used as a primary step for root-cause analysis, alarm flood pattern mining, and online operator support. AFSA methods have been promoted in several research activities in recent years. However, addressing an often-observed ambiguity of the order of alarms and the annunciation of irrelevant alarms in otherwise similar alarm subsequences remains a challenging task. To address and solve these limitations, this paper presents a novel AFSA method that uses alarm series as input to two extended term frequency-inverse document frequency (TF-IDF)-based clustering approaches, a dimensionality reduction technique, and a novel outlier validation. The method proposed here utilizes both characteristic alarm variables and their coactivations, thus, emphasizing the dynamic properties of alarms to a greater extent. Our method is compared to three relevant methods from the literature. The effectiveness and performance of the examined methods are illustrated by means of an openly accessible dataset based on the "Tennessee-Eastman-Process". It is shown that the integration of alarm series data improves the overall performance and robustness of the AFSA. Furthermore, the clustering results are less influenced by the ambiguity of the order of alarms and irrelevant alarms, thus overcoming a persistent challenge in alarm management research.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3128695</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Abnormal situations ; alarm analysis ; alarm floods ; alarm management ; Alarms ; Ambiguity ; Clustering ; Control systems ; Data mining ; Dimensionality reduction ; Floods ; industrial alarm systems ; Industrial electronics ; industrial process diagnosis ; Measurement ; Outliers (statistics) ; Pattern analysis ; Process control ; Root cause analysis ; Task analysis ; Tennessee-Eastman-Process ; Time series analysis</subject><ispartof>IEEE access, 2021, Vol.9, p.154965-154974</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4ef0f79eed0ecb2941e1e7a65e93fa844386b72b3e875bc21c2a710a76adb3533</citedby><cites>FETCH-LOGICAL-c408t-4ef0f79eed0ecb2941e1e7a65e93fa844386b72b3e875bc21c2a710a76adb3533</cites><orcidid>0000-0002-1922-654X ; 0000-0001-5984-6594 ; 0000-0001-5951-8590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9617607$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Manca, Gianluca</creatorcontrib><creatorcontrib>Dix, Marcel</creatorcontrib><creatorcontrib>Fay, Alexander</creatorcontrib><title>Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations</title><title>IEEE access</title><addtitle>Access</addtitle><description>Alarm flood similarity analysis (AFSA) methods are frequently used as a primary step for root-cause analysis, alarm flood pattern mining, and online operator support. AFSA methods have been promoted in several research activities in recent years. However, addressing an often-observed ambiguity of the order of alarms and the annunciation of irrelevant alarms in otherwise similar alarm subsequences remains a challenging task. To address and solve these limitations, this paper presents a novel AFSA method that uses alarm series as input to two extended term frequency-inverse document frequency (TF-IDF)-based clustering approaches, a dimensionality reduction technique, and a novel outlier validation. The method proposed here utilizes both characteristic alarm variables and their coactivations, thus, emphasizing the dynamic properties of alarms to a greater extent. Our method is compared to three relevant methods from the literature. The effectiveness and performance of the examined methods are illustrated by means of an openly accessible dataset based on the "Tennessee-Eastman-Process". It is shown that the integration of alarm series data improves the overall performance and robustness of the AFSA. Furthermore, the clustering results are less influenced by the ambiguity of the order of alarms and irrelevant alarms, thus overcoming a persistent challenge in alarm management research.</description><subject>Abnormal situations</subject><subject>alarm analysis</subject><subject>alarm floods</subject><subject>alarm management</subject><subject>Alarms</subject><subject>Ambiguity</subject><subject>Clustering</subject><subject>Control systems</subject><subject>Data mining</subject><subject>Dimensionality reduction</subject><subject>Floods</subject><subject>industrial alarm systems</subject><subject>Industrial electronics</subject><subject>industrial process diagnosis</subject><subject>Measurement</subject><subject>Outliers (statistics)</subject><subject>Pattern analysis</subject><subject>Process control</subject><subject>Root cause analysis</subject><subject>Task analysis</subject><subject>Tennessee-Eastman-Process</subject><subject>Time series analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc9q3DAQxk1poCHNE-Qi6Hm3-mfJOi4mbRYCPTg5i7E8TrV4rVTyFvIAfe_O1kuoLtIM8_tmRl9V3Qm-FYK7r7u2ve-6reRSbJWQjXH1h-paCuM2qlbm43_vT9VtKQdOp6FUba-rP-10KgvmOL-wNLIuHuMEmT3EsqQcA0xsR_GRdae-4K8TzgELizPbzwNxOVJBm-Ylp4l1byR0LOy5nMUuGCkTAPPA2p-QIZxblSUGoiiIv2GJaS6fq6sRpoK3l_umev52_9Q-bB5_fN-3u8dN0LxZNhpHPlqHOHAMvXRaoEALpkanRmi0Vo3prewVNrbugxRBghUcrIGhp_3VTbVfdYcEB_-a4xHym08Q_b9Eyi8eMk03oRdaDJoPGHhT66BcL2oIqDg4CJwak9aXVes1J_qYsvhDOuWZxvfScGG0ccpSlVqrQk6lZBzfuwruz_b51T5_ts9f7CPqbqUiIr4TzghruFV_AfrUmKg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Manca, Gianluca</creator><creator>Dix, Marcel</creator><creator>Fay, Alexander</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1922-654X</orcidid><orcidid>https://orcid.org/0000-0001-5984-6594</orcidid><orcidid>https://orcid.org/0000-0001-5951-8590</orcidid></search><sort><creationdate>2021</creationdate><title>Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations</title><author>Manca, Gianluca ; Dix, Marcel ; Fay, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4ef0f79eed0ecb2941e1e7a65e93fa844386b72b3e875bc21c2a710a76adb3533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormal situations</topic><topic>alarm analysis</topic><topic>alarm floods</topic><topic>alarm management</topic><topic>Alarms</topic><topic>Ambiguity</topic><topic>Clustering</topic><topic>Control systems</topic><topic>Data mining</topic><topic>Dimensionality reduction</topic><topic>Floods</topic><topic>industrial alarm systems</topic><topic>Industrial electronics</topic><topic>industrial process diagnosis</topic><topic>Measurement</topic><topic>Outliers (statistics)</topic><topic>Pattern analysis</topic><topic>Process control</topic><topic>Root cause analysis</topic><topic>Task analysis</topic><topic>Tennessee-Eastman-Process</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manca, Gianluca</creatorcontrib><creatorcontrib>Dix, Marcel</creatorcontrib><creatorcontrib>Fay, Alexander</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manca, Gianluca</au><au>Dix, Marcel</au><au>Fay, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>154965</spage><epage>154974</epage><pages>154965-154974</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Alarm flood similarity analysis (AFSA) methods are frequently used as a primary step for root-cause analysis, alarm flood pattern mining, and online operator support. AFSA methods have been promoted in several research activities in recent years. However, addressing an often-observed ambiguity of the order of alarms and the annunciation of irrelevant alarms in otherwise similar alarm subsequences remains a challenging task. To address and solve these limitations, this paper presents a novel AFSA method that uses alarm series as input to two extended term frequency-inverse document frequency (TF-IDF)-based clustering approaches, a dimensionality reduction technique, and a novel outlier validation. The method proposed here utilizes both characteristic alarm variables and their coactivations, thus, emphasizing the dynamic properties of alarms to a greater extent. Our method is compared to three relevant methods from the literature. The effectiveness and performance of the examined methods are illustrated by means of an openly accessible dataset based on the "Tennessee-Eastman-Process". It is shown that the integration of alarm series data improves the overall performance and robustness of the AFSA. Furthermore, the clustering results are less influenced by the ambiguity of the order of alarms and irrelevant alarms, thus overcoming a persistent challenge in alarm management research.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3128695</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1922-654X</orcidid><orcidid>https://orcid.org/0000-0001-5984-6594</orcidid><orcidid>https://orcid.org/0000-0001-5951-8590</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.154965-154974 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3128695 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Abnormal situations alarm analysis alarm floods alarm management Alarms Ambiguity Clustering Control systems Data mining Dimensionality reduction Floods industrial alarm systems Industrial electronics industrial process diagnosis Measurement Outliers (statistics) Pattern analysis Process control Root cause analysis Task analysis Tennessee-Eastman-Process Time series analysis |
title | Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20of%20Similar%20Historical%20Alarm%20Subsequences%20in%20Industrial%20Control%20Systems%20Using%20Alarm%20Series%20and%20Characteristic%20Coactivations&rft.jtitle=IEEE%20access&rft.au=Manca,%20Gianluca&rft.date=2021&rft.volume=9&rft.spage=154965&rft.epage=154974&rft.pages=154965-154974&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3128695&rft_dat=%3Cproquest_cross%3E2601646937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601646937&rft_id=info:pmid/&rft_ieee_id=9617607&rft_doaj_id=oai_doaj_org_article_141d40dec0854c39b15ace30a9ac041e&rfr_iscdi=true |