Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations

Alarm flood similarity analysis (AFSA) methods are frequently used as a primary step for root-cause analysis, alarm flood pattern mining, and online operator support. AFSA methods have been promoted in several research activities in recent years. However, addressing an often-observed ambiguity of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.154965-154974
Hauptverfasser: Manca, Gianluca, Dix, Marcel, Fay, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154974
container_issue
container_start_page 154965
container_title IEEE access
container_volume 9
creator Manca, Gianluca
Dix, Marcel
Fay, Alexander
description Alarm flood similarity analysis (AFSA) methods are frequently used as a primary step for root-cause analysis, alarm flood pattern mining, and online operator support. AFSA methods have been promoted in several research activities in recent years. However, addressing an often-observed ambiguity of the order of alarms and the annunciation of irrelevant alarms in otherwise similar alarm subsequences remains a challenging task. To address and solve these limitations, this paper presents a novel AFSA method that uses alarm series as input to two extended term frequency-inverse document frequency (TF-IDF)-based clustering approaches, a dimensionality reduction technique, and a novel outlier validation. The method proposed here utilizes both characteristic alarm variables and their coactivations, thus, emphasizing the dynamic properties of alarms to a greater extent. Our method is compared to three relevant methods from the literature. The effectiveness and performance of the examined methods are illustrated by means of an openly accessible dataset based on the "Tennessee-Eastman-Process". It is shown that the integration of alarm series data improves the overall performance and robustness of the AFSA. Furthermore, the clustering results are less influenced by the ambiguity of the order of alarms and irrelevant alarms, thus overcoming a persistent challenge in alarm management research.
doi_str_mv 10.1109/ACCESS.2021.3128695
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3128695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9617607</ieee_id><doaj_id>oai_doaj_org_article_141d40dec0854c39b15ace30a9ac041e</doaj_id><sourcerecordid>2601646937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4ef0f79eed0ecb2941e1e7a65e93fa844386b72b3e875bc21c2a710a76adb3533</originalsourceid><addsrcrecordid>eNpNkc9q3DAQxk1poCHNE-Qi6Hm3-mfJOi4mbRYCPTg5i7E8TrV4rVTyFvIAfe_O1kuoLtIM8_tmRl9V3Qm-FYK7r7u2ve-6reRSbJWQjXH1h-paCuM2qlbm43_vT9VtKQdOp6FUba-rP-10KgvmOL-wNLIuHuMEmT3EsqQcA0xsR_GRdae-4K8TzgELizPbzwNxOVJBm-Ylp4l1byR0LOy5nMUuGCkTAPPA2p-QIZxblSUGoiiIv2GJaS6fq6sRpoK3l_umev52_9Q-bB5_fN-3u8dN0LxZNhpHPlqHOHAMvXRaoEALpkanRmi0Vo3prewVNrbugxRBghUcrIGhp_3VTbVfdYcEB_-a4xHym08Q_b9Eyi8eMk03oRdaDJoPGHhT66BcL2oIqDg4CJwak9aXVes1J_qYsvhDOuWZxvfScGG0ccpSlVqrQk6lZBzfuwruz_b51T5_ts9f7CPqbqUiIr4TzghruFV_AfrUmKg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601646937</pqid></control><display><type>article</type><title>Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Manca, Gianluca ; Dix, Marcel ; Fay, Alexander</creator><creatorcontrib>Manca, Gianluca ; Dix, Marcel ; Fay, Alexander</creatorcontrib><description>Alarm flood similarity analysis (AFSA) methods are frequently used as a primary step for root-cause analysis, alarm flood pattern mining, and online operator support. AFSA methods have been promoted in several research activities in recent years. However, addressing an often-observed ambiguity of the order of alarms and the annunciation of irrelevant alarms in otherwise similar alarm subsequences remains a challenging task. To address and solve these limitations, this paper presents a novel AFSA method that uses alarm series as input to two extended term frequency-inverse document frequency (TF-IDF)-based clustering approaches, a dimensionality reduction technique, and a novel outlier validation. The method proposed here utilizes both characteristic alarm variables and their coactivations, thus, emphasizing the dynamic properties of alarms to a greater extent. Our method is compared to three relevant methods from the literature. The effectiveness and performance of the examined methods are illustrated by means of an openly accessible dataset based on the "Tennessee-Eastman-Process". It is shown that the integration of alarm series data improves the overall performance and robustness of the AFSA. Furthermore, the clustering results are less influenced by the ambiguity of the order of alarms and irrelevant alarms, thus overcoming a persistent challenge in alarm management research.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3128695</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Abnormal situations ; alarm analysis ; alarm floods ; alarm management ; Alarms ; Ambiguity ; Clustering ; Control systems ; Data mining ; Dimensionality reduction ; Floods ; industrial alarm systems ; Industrial electronics ; industrial process diagnosis ; Measurement ; Outliers (statistics) ; Pattern analysis ; Process control ; Root cause analysis ; Task analysis ; Tennessee-Eastman-Process ; Time series analysis</subject><ispartof>IEEE access, 2021, Vol.9, p.154965-154974</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4ef0f79eed0ecb2941e1e7a65e93fa844386b72b3e875bc21c2a710a76adb3533</citedby><cites>FETCH-LOGICAL-c408t-4ef0f79eed0ecb2941e1e7a65e93fa844386b72b3e875bc21c2a710a76adb3533</cites><orcidid>0000-0002-1922-654X ; 0000-0001-5984-6594 ; 0000-0001-5951-8590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9617607$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Manca, Gianluca</creatorcontrib><creatorcontrib>Dix, Marcel</creatorcontrib><creatorcontrib>Fay, Alexander</creatorcontrib><title>Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations</title><title>IEEE access</title><addtitle>Access</addtitle><description>Alarm flood similarity analysis (AFSA) methods are frequently used as a primary step for root-cause analysis, alarm flood pattern mining, and online operator support. AFSA methods have been promoted in several research activities in recent years. However, addressing an often-observed ambiguity of the order of alarms and the annunciation of irrelevant alarms in otherwise similar alarm subsequences remains a challenging task. To address and solve these limitations, this paper presents a novel AFSA method that uses alarm series as input to two extended term frequency-inverse document frequency (TF-IDF)-based clustering approaches, a dimensionality reduction technique, and a novel outlier validation. The method proposed here utilizes both characteristic alarm variables and their coactivations, thus, emphasizing the dynamic properties of alarms to a greater extent. Our method is compared to three relevant methods from the literature. The effectiveness and performance of the examined methods are illustrated by means of an openly accessible dataset based on the "Tennessee-Eastman-Process". It is shown that the integration of alarm series data improves the overall performance and robustness of the AFSA. Furthermore, the clustering results are less influenced by the ambiguity of the order of alarms and irrelevant alarms, thus overcoming a persistent challenge in alarm management research.</description><subject>Abnormal situations</subject><subject>alarm analysis</subject><subject>alarm floods</subject><subject>alarm management</subject><subject>Alarms</subject><subject>Ambiguity</subject><subject>Clustering</subject><subject>Control systems</subject><subject>Data mining</subject><subject>Dimensionality reduction</subject><subject>Floods</subject><subject>industrial alarm systems</subject><subject>Industrial electronics</subject><subject>industrial process diagnosis</subject><subject>Measurement</subject><subject>Outliers (statistics)</subject><subject>Pattern analysis</subject><subject>Process control</subject><subject>Root cause analysis</subject><subject>Task analysis</subject><subject>Tennessee-Eastman-Process</subject><subject>Time series analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc9q3DAQxk1poCHNE-Qi6Hm3-mfJOi4mbRYCPTg5i7E8TrV4rVTyFvIAfe_O1kuoLtIM8_tmRl9V3Qm-FYK7r7u2ve-6reRSbJWQjXH1h-paCuM2qlbm43_vT9VtKQdOp6FUba-rP-10KgvmOL-wNLIuHuMEmT3EsqQcA0xsR_GRdae-4K8TzgELizPbzwNxOVJBm-Ylp4l1byR0LOy5nMUuGCkTAPPA2p-QIZxblSUGoiiIv2GJaS6fq6sRpoK3l_umev52_9Q-bB5_fN-3u8dN0LxZNhpHPlqHOHAMvXRaoEALpkanRmi0Vo3prewVNrbugxRBghUcrIGhp_3VTbVfdYcEB_-a4xHym08Q_b9Eyi8eMk03oRdaDJoPGHhT66BcL2oIqDg4CJwak9aXVes1J_qYsvhDOuWZxvfScGG0ccpSlVqrQk6lZBzfuwruz_b51T5_ts9f7CPqbqUiIr4TzghruFV_AfrUmKg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Manca, Gianluca</creator><creator>Dix, Marcel</creator><creator>Fay, Alexander</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1922-654X</orcidid><orcidid>https://orcid.org/0000-0001-5984-6594</orcidid><orcidid>https://orcid.org/0000-0001-5951-8590</orcidid></search><sort><creationdate>2021</creationdate><title>Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations</title><author>Manca, Gianluca ; Dix, Marcel ; Fay, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4ef0f79eed0ecb2941e1e7a65e93fa844386b72b3e875bc21c2a710a76adb3533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormal situations</topic><topic>alarm analysis</topic><topic>alarm floods</topic><topic>alarm management</topic><topic>Alarms</topic><topic>Ambiguity</topic><topic>Clustering</topic><topic>Control systems</topic><topic>Data mining</topic><topic>Dimensionality reduction</topic><topic>Floods</topic><topic>industrial alarm systems</topic><topic>Industrial electronics</topic><topic>industrial process diagnosis</topic><topic>Measurement</topic><topic>Outliers (statistics)</topic><topic>Pattern analysis</topic><topic>Process control</topic><topic>Root cause analysis</topic><topic>Task analysis</topic><topic>Tennessee-Eastman-Process</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manca, Gianluca</creatorcontrib><creatorcontrib>Dix, Marcel</creatorcontrib><creatorcontrib>Fay, Alexander</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manca, Gianluca</au><au>Dix, Marcel</au><au>Fay, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>154965</spage><epage>154974</epage><pages>154965-154974</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Alarm flood similarity analysis (AFSA) methods are frequently used as a primary step for root-cause analysis, alarm flood pattern mining, and online operator support. AFSA methods have been promoted in several research activities in recent years. However, addressing an often-observed ambiguity of the order of alarms and the annunciation of irrelevant alarms in otherwise similar alarm subsequences remains a challenging task. To address and solve these limitations, this paper presents a novel AFSA method that uses alarm series as input to two extended term frequency-inverse document frequency (TF-IDF)-based clustering approaches, a dimensionality reduction technique, and a novel outlier validation. The method proposed here utilizes both characteristic alarm variables and their coactivations, thus, emphasizing the dynamic properties of alarms to a greater extent. Our method is compared to three relevant methods from the literature. The effectiveness and performance of the examined methods are illustrated by means of an openly accessible dataset based on the "Tennessee-Eastman-Process". It is shown that the integration of alarm series data improves the overall performance and robustness of the AFSA. Furthermore, the clustering results are less influenced by the ambiguity of the order of alarms and irrelevant alarms, thus overcoming a persistent challenge in alarm management research.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3128695</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1922-654X</orcidid><orcidid>https://orcid.org/0000-0001-5984-6594</orcidid><orcidid>https://orcid.org/0000-0001-5951-8590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.154965-154974
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3128695
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Abnormal situations
alarm analysis
alarm floods
alarm management
Alarms
Ambiguity
Clustering
Control systems
Data mining
Dimensionality reduction
Floods
industrial alarm systems
Industrial electronics
industrial process diagnosis
Measurement
Outliers (statistics)
Pattern analysis
Process control
Root cause analysis
Task analysis
Tennessee-Eastman-Process
Time series analysis
title Clustering of Similar Historical Alarm Subsequences in Industrial Control Systems Using Alarm Series and Characteristic Coactivations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20of%20Similar%20Historical%20Alarm%20Subsequences%20in%20Industrial%20Control%20Systems%20Using%20Alarm%20Series%20and%20Characteristic%20Coactivations&rft.jtitle=IEEE%20access&rft.au=Manca,%20Gianluca&rft.date=2021&rft.volume=9&rft.spage=154965&rft.epage=154974&rft.pages=154965-154974&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3128695&rft_dat=%3Cproquest_cross%3E2601646937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601646937&rft_id=info:pmid/&rft_ieee_id=9617607&rft_doaj_id=oai_doaj_org_article_141d40dec0854c39b15ace30a9ac041e&rfr_iscdi=true