Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs

Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.140031-140041
Hauptverfasser: Devecioglu, Ozer Can, Malik, Junaid, Ince, Turker, Kiranyaz, Serkan, Atalay, Eray, Gabbouj, Moncef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140041
container_issue
container_start_page 140031
container_title IEEE access
container_volume 9
creator Devecioglu, Ozer Can
Malik, Junaid
Ince, Turker
Kiranyaz, Serkan
Atalay, Eray
Gabbouj, Moncef
description Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled data, their generalization performance was limited along with high computational complexity and special hardware requirements. In this study, compact Self-Organized Operational Neural Networks (Self-ONNs) are proposed for early detection of glaucoma in fundus images and their performance is compared against the conventional (deep) Convolutional Neural Networks (CNNs) over three benchmark datasets: ACRIMA, RIM-ONE, and ESOGU. The experimental results demonstrate that Self-ONNs not only achieve superior detection performance but can also significantly reduce the computational complexity making it a potentially suitable network model for biomedical datasets especially when the data is scarce.
doi_str_mv 10.1109/ACCESS.2021.3118102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3118102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9559961</ieee_id><doaj_id>oai_doaj_org_article_1e7dc0a710e248f58967140749bfdc49</doaj_id><sourcerecordid>2583639270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-72f98829e8a044dbea3d7e935a6e4c96616bdad1374f014aaa4455a60ae1133c3</originalsourceid><addsrcrecordid>eNpNUU1r4zAQNUsLW7r5Bb0Y9uxUI8n6OJa0SQOlgaY9i4k8Dgp21JXsw_77detSdi4zvHnvzcArihtgSwBmb-9Wq4f9fskZh6UAMMD4j-KKg7KVqIW6-G_-WSxyPrGpzATV-qrYvBB21Wvoqdx0OPrYY3lPA_khxHO5TrEv78MxDNiV6_HcjLnc9nikXL7lcD6We-raavf8nH8Vly12mRZf_bp4Wz-8rh6rp91mu7p7qrxkZqg0b60x3JJBJmVzIBSNJitqVCS9VQrUocEGhJYtA4mIUtbTkiEBCOHFdbGdfZuIJ_eeQo_pr4sY3CcQ09FhGoLvyAHpxjPUwIhL09bGKg2SaWkPbeOlnbx-z17vKf4ZKQ_uFMd0nt53vDZCCcs1m1hiZvkUc07Ufl8F5j4CcHMA7iMA9xXApLqZVYGIvhW2rq1VIP4B9Ht-ww</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583639270</pqid></control><display><type>article</type><title>Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Devecioglu, Ozer Can ; Malik, Junaid ; Ince, Turker ; Kiranyaz, Serkan ; Atalay, Eray ; Gabbouj, Moncef</creator><creatorcontrib>Devecioglu, Ozer Can ; Malik, Junaid ; Ince, Turker ; Kiranyaz, Serkan ; Atalay, Eray ; Gabbouj, Moncef</creatorcontrib><description>Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled data, their generalization performance was limited along with high computational complexity and special hardware requirements. In this study, compact Self-Organized Operational Neural Networks (Self-ONNs) are proposed for early detection of glaucoma in fundus images and their performance is compared against the conventional (deep) Convolutional Neural Networks (CNNs) over three benchmark datasets: ACRIMA, RIM-ONE, and ESOGU. The experimental results demonstrate that Self-ONNs not only achieve superior detection performance but can also significantly reduce the computational complexity making it a potentially suitable network model for biomedical datasets especially when the data is scarce.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3118102</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Biological system modeling ; Biomedical optical imaging ; Brain damage ; Complexity ; Computational modeling ; Convolutional neural networks: glaucoma detection ; Datasets ; Digital imaging ; Feature extraction ; Glaucoma ; Image segmentation ; medical image processing ; Neural networks ; Neurons ; operational neural networks ; Optical imaging ; transfer learning</subject><ispartof>IEEE access, 2021, Vol.9, p.140031-140041</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-72f98829e8a044dbea3d7e935a6e4c96616bdad1374f014aaa4455a60ae1133c3</citedby><cites>FETCH-LOGICAL-c408t-72f98829e8a044dbea3d7e935a6e4c96616bdad1374f014aaa4455a60ae1133c3</cites><orcidid>0000-0002-9788-2323 ; 0000-0002-2536-4279 ; 0000-0003-1551-3397 ; 0000-0002-8495-8958 ; 0000-0002-9810-622X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9559961$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Devecioglu, Ozer Can</creatorcontrib><creatorcontrib>Malik, Junaid</creatorcontrib><creatorcontrib>Ince, Turker</creatorcontrib><creatorcontrib>Kiranyaz, Serkan</creatorcontrib><creatorcontrib>Atalay, Eray</creatorcontrib><creatorcontrib>Gabbouj, Moncef</creatorcontrib><title>Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs</title><title>IEEE access</title><addtitle>Access</addtitle><description>Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled data, their generalization performance was limited along with high computational complexity and special hardware requirements. In this study, compact Self-Organized Operational Neural Networks (Self-ONNs) are proposed for early detection of glaucoma in fundus images and their performance is compared against the conventional (deep) Convolutional Neural Networks (CNNs) over three benchmark datasets: ACRIMA, RIM-ONE, and ESOGU. The experimental results demonstrate that Self-ONNs not only achieve superior detection performance but can also significantly reduce the computational complexity making it a potentially suitable network model for biomedical datasets especially when the data is scarce.</description><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>Biomedical optical imaging</subject><subject>Brain damage</subject><subject>Complexity</subject><subject>Computational modeling</subject><subject>Convolutional neural networks: glaucoma detection</subject><subject>Datasets</subject><subject>Digital imaging</subject><subject>Feature extraction</subject><subject>Glaucoma</subject><subject>Image segmentation</subject><subject>medical image processing</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>operational neural networks</subject><subject>Optical imaging</subject><subject>transfer learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r4zAQNUsLW7r5Bb0Y9uxUI8n6OJa0SQOlgaY9i4k8Dgp21JXsw_77detSdi4zvHnvzcArihtgSwBmb-9Wq4f9fskZh6UAMMD4j-KKg7KVqIW6-G_-WSxyPrGpzATV-qrYvBB21Wvoqdx0OPrYY3lPA_khxHO5TrEv78MxDNiV6_HcjLnc9nikXL7lcD6We-raavf8nH8Vly12mRZf_bp4Wz-8rh6rp91mu7p7qrxkZqg0b60x3JJBJmVzIBSNJitqVCS9VQrUocEGhJYtA4mIUtbTkiEBCOHFdbGdfZuIJ_eeQo_pr4sY3CcQ09FhGoLvyAHpxjPUwIhL09bGKg2SaWkPbeOlnbx-z17vKf4ZKQ_uFMd0nt53vDZCCcs1m1hiZvkUc07Ufl8F5j4CcHMA7iMA9xXApLqZVYGIvhW2rq1VIP4B9Ht-ww</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Devecioglu, Ozer Can</creator><creator>Malik, Junaid</creator><creator>Ince, Turker</creator><creator>Kiranyaz, Serkan</creator><creator>Atalay, Eray</creator><creator>Gabbouj, Moncef</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9788-2323</orcidid><orcidid>https://orcid.org/0000-0002-2536-4279</orcidid><orcidid>https://orcid.org/0000-0003-1551-3397</orcidid><orcidid>https://orcid.org/0000-0002-8495-8958</orcidid><orcidid>https://orcid.org/0000-0002-9810-622X</orcidid></search><sort><creationdate>2021</creationdate><title>Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs</title><author>Devecioglu, Ozer Can ; Malik, Junaid ; Ince, Turker ; Kiranyaz, Serkan ; Atalay, Eray ; Gabbouj, Moncef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-72f98829e8a044dbea3d7e935a6e4c96616bdad1374f014aaa4455a60ae1133c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>Biomedical optical imaging</topic><topic>Brain damage</topic><topic>Complexity</topic><topic>Computational modeling</topic><topic>Convolutional neural networks: glaucoma detection</topic><topic>Datasets</topic><topic>Digital imaging</topic><topic>Feature extraction</topic><topic>Glaucoma</topic><topic>Image segmentation</topic><topic>medical image processing</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>operational neural networks</topic><topic>Optical imaging</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devecioglu, Ozer Can</creatorcontrib><creatorcontrib>Malik, Junaid</creatorcontrib><creatorcontrib>Ince, Turker</creatorcontrib><creatorcontrib>Kiranyaz, Serkan</creatorcontrib><creatorcontrib>Atalay, Eray</creatorcontrib><creatorcontrib>Gabbouj, Moncef</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devecioglu, Ozer Can</au><au>Malik, Junaid</au><au>Ince, Turker</au><au>Kiranyaz, Serkan</au><au>Atalay, Eray</au><au>Gabbouj, Moncef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>140031</spage><epage>140041</epage><pages>140031-140041</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled data, their generalization performance was limited along with high computational complexity and special hardware requirements. In this study, compact Self-Organized Operational Neural Networks (Self-ONNs) are proposed for early detection of glaucoma in fundus images and their performance is compared against the conventional (deep) Convolutional Neural Networks (CNNs) over three benchmark datasets: ACRIMA, RIM-ONE, and ESOGU. The experimental results demonstrate that Self-ONNs not only achieve superior detection performance but can also significantly reduce the computational complexity making it a potentially suitable network model for biomedical datasets especially when the data is scarce.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3118102</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9788-2323</orcidid><orcidid>https://orcid.org/0000-0002-2536-4279</orcidid><orcidid>https://orcid.org/0000-0003-1551-3397</orcidid><orcidid>https://orcid.org/0000-0002-8495-8958</orcidid><orcidid>https://orcid.org/0000-0002-9810-622X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.140031-140041
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3118102
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Biological system modeling
Biomedical optical imaging
Brain damage
Complexity
Computational modeling
Convolutional neural networks: glaucoma detection
Datasets
Digital imaging
Feature extraction
Glaucoma
Image segmentation
medical image processing
Neural networks
Neurons
operational neural networks
Optical imaging
transfer learning
title Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Glaucoma%20Detection%20From%20Digital%20Fundus%20Images%20Using%20Self-ONNs&rft.jtitle=IEEE%20access&rft.au=Devecioglu,%20Ozer%20Can&rft.date=2021&rft.volume=9&rft.spage=140031&rft.epage=140041&rft.pages=140031-140041&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3118102&rft_dat=%3Cproquest_cross%3E2583639270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583639270&rft_id=info:pmid/&rft_ieee_id=9559961&rft_doaj_id=oai_doaj_org_article_1e7dc0a710e248f58967140749bfdc49&rfr_iscdi=true