Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs
Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.140031-140041 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140041 |
---|---|
container_issue | |
container_start_page | 140031 |
container_title | IEEE access |
container_volume | 9 |
creator | Devecioglu, Ozer Can Malik, Junaid Ince, Turker Kiranyaz, Serkan Atalay, Eray Gabbouj, Moncef |
description | Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled data, their generalization performance was limited along with high computational complexity and special hardware requirements. In this study, compact Self-Organized Operational Neural Networks (Self-ONNs) are proposed for early detection of glaucoma in fundus images and their performance is compared against the conventional (deep) Convolutional Neural Networks (CNNs) over three benchmark datasets: ACRIMA, RIM-ONE, and ESOGU. The experimental results demonstrate that Self-ONNs not only achieve superior detection performance but can also significantly reduce the computational complexity making it a potentially suitable network model for biomedical datasets especially when the data is scarce. |
doi_str_mv | 10.1109/ACCESS.2021.3118102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3118102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9559961</ieee_id><doaj_id>oai_doaj_org_article_1e7dc0a710e248f58967140749bfdc49</doaj_id><sourcerecordid>2583639270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-72f98829e8a044dbea3d7e935a6e4c96616bdad1374f014aaa4455a60ae1133c3</originalsourceid><addsrcrecordid>eNpNUU1r4zAQNUsLW7r5Bb0Y9uxUI8n6OJa0SQOlgaY9i4k8Dgp21JXsw_77detSdi4zvHnvzcArihtgSwBmb-9Wq4f9fskZh6UAMMD4j-KKg7KVqIW6-G_-WSxyPrGpzATV-qrYvBB21Wvoqdx0OPrYY3lPA_khxHO5TrEv78MxDNiV6_HcjLnc9nikXL7lcD6We-raavf8nH8Vly12mRZf_bp4Wz-8rh6rp91mu7p7qrxkZqg0b60x3JJBJmVzIBSNJitqVCS9VQrUocEGhJYtA4mIUtbTkiEBCOHFdbGdfZuIJ_eeQo_pr4sY3CcQ09FhGoLvyAHpxjPUwIhL09bGKg2SaWkPbeOlnbx-z17vKf4ZKQ_uFMd0nt53vDZCCcs1m1hiZvkUc07Ufl8F5j4CcHMA7iMA9xXApLqZVYGIvhW2rq1VIP4B9Ht-ww</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583639270</pqid></control><display><type>article</type><title>Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Devecioglu, Ozer Can ; Malik, Junaid ; Ince, Turker ; Kiranyaz, Serkan ; Atalay, Eray ; Gabbouj, Moncef</creator><creatorcontrib>Devecioglu, Ozer Can ; Malik, Junaid ; Ince, Turker ; Kiranyaz, Serkan ; Atalay, Eray ; Gabbouj, Moncef</creatorcontrib><description>Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled data, their generalization performance was limited along with high computational complexity and special hardware requirements. In this study, compact Self-Organized Operational Neural Networks (Self-ONNs) are proposed for early detection of glaucoma in fundus images and their performance is compared against the conventional (deep) Convolutional Neural Networks (CNNs) over three benchmark datasets: ACRIMA, RIM-ONE, and ESOGU. The experimental results demonstrate that Self-ONNs not only achieve superior detection performance but can also significantly reduce the computational complexity making it a potentially suitable network model for biomedical datasets especially when the data is scarce.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3118102</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Biological system modeling ; Biomedical optical imaging ; Brain damage ; Complexity ; Computational modeling ; Convolutional neural networks: glaucoma detection ; Datasets ; Digital imaging ; Feature extraction ; Glaucoma ; Image segmentation ; medical image processing ; Neural networks ; Neurons ; operational neural networks ; Optical imaging ; transfer learning</subject><ispartof>IEEE access, 2021, Vol.9, p.140031-140041</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-72f98829e8a044dbea3d7e935a6e4c96616bdad1374f014aaa4455a60ae1133c3</citedby><cites>FETCH-LOGICAL-c408t-72f98829e8a044dbea3d7e935a6e4c96616bdad1374f014aaa4455a60ae1133c3</cites><orcidid>0000-0002-9788-2323 ; 0000-0002-2536-4279 ; 0000-0003-1551-3397 ; 0000-0002-8495-8958 ; 0000-0002-9810-622X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9559961$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Devecioglu, Ozer Can</creatorcontrib><creatorcontrib>Malik, Junaid</creatorcontrib><creatorcontrib>Ince, Turker</creatorcontrib><creatorcontrib>Kiranyaz, Serkan</creatorcontrib><creatorcontrib>Atalay, Eray</creatorcontrib><creatorcontrib>Gabbouj, Moncef</creatorcontrib><title>Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs</title><title>IEEE access</title><addtitle>Access</addtitle><description>Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled data, their generalization performance was limited along with high computational complexity and special hardware requirements. In this study, compact Self-Organized Operational Neural Networks (Self-ONNs) are proposed for early detection of glaucoma in fundus images and their performance is compared against the conventional (deep) Convolutional Neural Networks (CNNs) over three benchmark datasets: ACRIMA, RIM-ONE, and ESOGU. The experimental results demonstrate that Self-ONNs not only achieve superior detection performance but can also significantly reduce the computational complexity making it a potentially suitable network model for biomedical datasets especially when the data is scarce.</description><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>Biomedical optical imaging</subject><subject>Brain damage</subject><subject>Complexity</subject><subject>Computational modeling</subject><subject>Convolutional neural networks: glaucoma detection</subject><subject>Datasets</subject><subject>Digital imaging</subject><subject>Feature extraction</subject><subject>Glaucoma</subject><subject>Image segmentation</subject><subject>medical image processing</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>operational neural networks</subject><subject>Optical imaging</subject><subject>transfer learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r4zAQNUsLW7r5Bb0Y9uxUI8n6OJa0SQOlgaY9i4k8Dgp21JXsw_77detSdi4zvHnvzcArihtgSwBmb-9Wq4f9fskZh6UAMMD4j-KKg7KVqIW6-G_-WSxyPrGpzATV-qrYvBB21Wvoqdx0OPrYY3lPA_khxHO5TrEv78MxDNiV6_HcjLnc9nikXL7lcD6We-raavf8nH8Vly12mRZf_bp4Wz-8rh6rp91mu7p7qrxkZqg0b60x3JJBJmVzIBSNJitqVCS9VQrUocEGhJYtA4mIUtbTkiEBCOHFdbGdfZuIJ_eeQo_pr4sY3CcQ09FhGoLvyAHpxjPUwIhL09bGKg2SaWkPbeOlnbx-z17vKf4ZKQ_uFMd0nt53vDZCCcs1m1hiZvkUc07Ufl8F5j4CcHMA7iMA9xXApLqZVYGIvhW2rq1VIP4B9Ht-ww</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Devecioglu, Ozer Can</creator><creator>Malik, Junaid</creator><creator>Ince, Turker</creator><creator>Kiranyaz, Serkan</creator><creator>Atalay, Eray</creator><creator>Gabbouj, Moncef</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9788-2323</orcidid><orcidid>https://orcid.org/0000-0002-2536-4279</orcidid><orcidid>https://orcid.org/0000-0003-1551-3397</orcidid><orcidid>https://orcid.org/0000-0002-8495-8958</orcidid><orcidid>https://orcid.org/0000-0002-9810-622X</orcidid></search><sort><creationdate>2021</creationdate><title>Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs</title><author>Devecioglu, Ozer Can ; Malik, Junaid ; Ince, Turker ; Kiranyaz, Serkan ; Atalay, Eray ; Gabbouj, Moncef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-72f98829e8a044dbea3d7e935a6e4c96616bdad1374f014aaa4455a60ae1133c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>Biomedical optical imaging</topic><topic>Brain damage</topic><topic>Complexity</topic><topic>Computational modeling</topic><topic>Convolutional neural networks: glaucoma detection</topic><topic>Datasets</topic><topic>Digital imaging</topic><topic>Feature extraction</topic><topic>Glaucoma</topic><topic>Image segmentation</topic><topic>medical image processing</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>operational neural networks</topic><topic>Optical imaging</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devecioglu, Ozer Can</creatorcontrib><creatorcontrib>Malik, Junaid</creatorcontrib><creatorcontrib>Ince, Turker</creatorcontrib><creatorcontrib>Kiranyaz, Serkan</creatorcontrib><creatorcontrib>Atalay, Eray</creatorcontrib><creatorcontrib>Gabbouj, Moncef</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devecioglu, Ozer Can</au><au>Malik, Junaid</au><au>Ince, Turker</au><au>Kiranyaz, Serkan</au><au>Atalay, Eray</au><au>Gabbouj, Moncef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>140031</spage><epage>140041</epage><pages>140031-140041</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled data, their generalization performance was limited along with high computational complexity and special hardware requirements. In this study, compact Self-Organized Operational Neural Networks (Self-ONNs) are proposed for early detection of glaucoma in fundus images and their performance is compared against the conventional (deep) Convolutional Neural Networks (CNNs) over three benchmark datasets: ACRIMA, RIM-ONE, and ESOGU. The experimental results demonstrate that Self-ONNs not only achieve superior detection performance but can also significantly reduce the computational complexity making it a potentially suitable network model for biomedical datasets especially when the data is scarce.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3118102</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9788-2323</orcidid><orcidid>https://orcid.org/0000-0002-2536-4279</orcidid><orcidid>https://orcid.org/0000-0003-1551-3397</orcidid><orcidid>https://orcid.org/0000-0002-8495-8958</orcidid><orcidid>https://orcid.org/0000-0002-9810-622X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.140031-140041 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3118102 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks Biological system modeling Biomedical optical imaging Brain damage Complexity Computational modeling Convolutional neural networks: glaucoma detection Datasets Digital imaging Feature extraction Glaucoma Image segmentation medical image processing Neural networks Neurons operational neural networks Optical imaging transfer learning |
title | Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Glaucoma%20Detection%20From%20Digital%20Fundus%20Images%20Using%20Self-ONNs&rft.jtitle=IEEE%20access&rft.au=Devecioglu,%20Ozer%20Can&rft.date=2021&rft.volume=9&rft.spage=140031&rft.epage=140041&rft.pages=140031-140041&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3118102&rft_dat=%3Cproquest_cross%3E2583639270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583639270&rft_id=info:pmid/&rft_ieee_id=9559961&rft_doaj_id=oai_doaj_org_article_1e7dc0a710e248f58967140749bfdc49&rfr_iscdi=true |