Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications
In this paper, we present an asthma risk prediction tool based on machine learning (ML). The entire tool is implemented on a smartphone as a mobile-health (m-health) application using the resources of Internet-of-Things (IoT). Peak Expiratory Flow Rates (PEFR) are commonly measured using external in...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.118708-118715 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118715 |
---|---|
container_issue | |
container_start_page | 118708 |
container_title | IEEE access |
container_volume | 9 |
creator | Bhat, Gautam S. Shankar, Nikhil Kim, Dohyeong Song, Dae Jin Seo, Sungchul Panahi, Issa M. S. Tamil, Lakshman |
description | In this paper, we present an asthma risk prediction tool based on machine learning (ML). The entire tool is implemented on a smartphone as a mobile-health (m-health) application using the resources of Internet-of-Things (IoT). Peak Expiratory Flow Rates (PEFR) are commonly measured using external instruments such as peak flow meters and are well known asthama risk predictors. In this work, we find a correlation between the particulate matter (PM) found indoors and the outside weather with the PEFR. The PEFR results are classified into three categories such as 'Green' (Safe), 'Yellow' (Moderate Risk) and 'Red' (High Risk) conditions in comparison to the best peak flow value obtained by each individual. Convolutional neural network (CNN) architecture is used to map the relationship between the indoor PM and weather data to the PEFR values. The proposed method is compared with the state-of-the-art deep neural network (DNN) based techniques in terms of the root mean square and mean absolute error accuracy measures. These performance measures are better for the proposed method than other methods discussed in the literature. The entire setup is implemented on a smartphone as an app. An IoT system including a Raspberry Pi is used to collect the input data. This assistive tool can be a cost-effective tool for predicting the risk of asthma attacks. |
doi_str_mv | 10.1109/ACCESS.2021.3103897 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3103897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9509522</ieee_id><doaj_id>oai_doaj_org_article_6602794b97384442805e967608470384</doaj_id><sourcerecordid>2568069586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-90ab20ec5fd43e7d065599e1aa2ae5ebd088317f5ce7a14049921d95d6ac250a3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoLDUl-gS8LPa87-paOrklbg0NCHJ-FLI1juc5qK20O-feVsyF0LjMM7715zGuaGYE5IWC-L5bLm81mToGSOSPAtFGfmgtKpOmYYPLzf_PX5rqUI9TSdSXURbO5df4Qe2zX6HIf-6fuhysY2kUZD8-ufYjlT3ufMUQ_xtS321Ih7So9tq4P7ebZ5XE4pEpfDMMpencGlavmy96dCl6_98tm-_Pmcfm7W9_9Wi0X685z0GNnwO0ooBf7wBmqAFIIY5A4Rx0K3AXQmhG1Fx6VIxy4MZQEI4J0ngpw7LJZTbohuaMdcqx2Xm1y0b4tUn6y1V_0J7RSAlWG74ximnNONQg0UknQXNWP8ar1bdIacvr7gmW0x_SS-2rfUiE11G9pWVFsQvmcSsm4_7hKwJ7DsFMY9hyGfQ-jsmYTKyLiB8MIMIJS9g-XJ4LQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568069586</pqid></control><display><type>article</type><title>Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bhat, Gautam S. ; Shankar, Nikhil ; Kim, Dohyeong ; Song, Dae Jin ; Seo, Sungchul ; Panahi, Issa M. S. ; Tamil, Lakshman</creator><creatorcontrib>Bhat, Gautam S. ; Shankar, Nikhil ; Kim, Dohyeong ; Song, Dae Jin ; Seo, Sungchul ; Panahi, Issa M. S. ; Tamil, Lakshman</creatorcontrib><description>In this paper, we present an asthma risk prediction tool based on machine learning (ML). The entire tool is implemented on a smartphone as a mobile-health (m-health) application using the resources of Internet-of-Things (IoT). Peak Expiratory Flow Rates (PEFR) are commonly measured using external instruments such as peak flow meters and are well known asthama risk predictors. In this work, we find a correlation between the particulate matter (PM) found indoors and the outside weather with the PEFR. The PEFR results are classified into three categories such as 'Green' (Safe), 'Yellow' (Moderate Risk) and 'Red' (High Risk) conditions in comparison to the best peak flow value obtained by each individual. Convolutional neural network (CNN) architecture is used to map the relationship between the indoor PM and weather data to the PEFR values. The proposed method is compared with the state-of-the-art deep neural network (DNN) based techniques in terms of the root mean square and mean absolute error accuracy measures. These performance measures are better for the proposed method than other methods discussed in the literature. The entire setup is implemented on a smartphone as an app. An IoT system including a Raspberry Pi is used to collect the input data. This assistive tool can be a cost-effective tool for predicting the risk of asthma attacks.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3103897</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Asthma ; Asthma prediction ; Atmospheric modeling ; convolutional neural network ; Convolutional neural networks ; Diseases ; Error analysis ; Flow velocity ; Flowmeters ; Internet of Things ; Internet-of-Things (IoT) ; Machine learning ; Meteorological data ; Meteorology ; Neural networks ; Particulate emissions ; particulate matter (PM) ; peak expiratory flow rates (PEFR) ; Predictive models ; Raspberry Pi ; Real-time systems ; Respiratory system ; Risk ; Smartphones</subject><ispartof>IEEE access, 2021, Vol.9, p.118708-118715</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-90ab20ec5fd43e7d065599e1aa2ae5ebd088317f5ce7a14049921d95d6ac250a3</citedby><cites>FETCH-LOGICAL-c408t-90ab20ec5fd43e7d065599e1aa2ae5ebd088317f5ce7a14049921d95d6ac250a3</cites><orcidid>0000-0003-0647-3186 ; 0000-0001-8301-6355 ; 0000-0002-1852-3104 ; 0000-0003-4523-9376 ; 0000-0003-1963-126X ; 0000-0002-1428-1451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9509522$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Bhat, Gautam S.</creatorcontrib><creatorcontrib>Shankar, Nikhil</creatorcontrib><creatorcontrib>Kim, Dohyeong</creatorcontrib><creatorcontrib>Song, Dae Jin</creatorcontrib><creatorcontrib>Seo, Sungchul</creatorcontrib><creatorcontrib>Panahi, Issa M. S.</creatorcontrib><creatorcontrib>Tamil, Lakshman</creatorcontrib><title>Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we present an asthma risk prediction tool based on machine learning (ML). The entire tool is implemented on a smartphone as a mobile-health (m-health) application using the resources of Internet-of-Things (IoT). Peak Expiratory Flow Rates (PEFR) are commonly measured using external instruments such as peak flow meters and are well known asthama risk predictors. In this work, we find a correlation between the particulate matter (PM) found indoors and the outside weather with the PEFR. The PEFR results are classified into three categories such as 'Green' (Safe), 'Yellow' (Moderate Risk) and 'Red' (High Risk) conditions in comparison to the best peak flow value obtained by each individual. Convolutional neural network (CNN) architecture is used to map the relationship between the indoor PM and weather data to the PEFR values. The proposed method is compared with the state-of-the-art deep neural network (DNN) based techniques in terms of the root mean square and mean absolute error accuracy measures. These performance measures are better for the proposed method than other methods discussed in the literature. The entire setup is implemented on a smartphone as an app. An IoT system including a Raspberry Pi is used to collect the input data. This assistive tool can be a cost-effective tool for predicting the risk of asthma attacks.</description><subject>Artificial neural networks</subject><subject>Asthma</subject><subject>Asthma prediction</subject><subject>Atmospheric modeling</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Diseases</subject><subject>Error analysis</subject><subject>Flow velocity</subject><subject>Flowmeters</subject><subject>Internet of Things</subject><subject>Internet-of-Things (IoT)</subject><subject>Machine learning</subject><subject>Meteorological data</subject><subject>Meteorology</subject><subject>Neural networks</subject><subject>Particulate emissions</subject><subject>particulate matter (PM)</subject><subject>peak expiratory flow rates (PEFR)</subject><subject>Predictive models</subject><subject>Raspberry Pi</subject><subject>Real-time systems</subject><subject>Respiratory system</subject><subject>Risk</subject><subject>Smartphones</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoLDUl-gS8LPa87-paOrklbg0NCHJ-FLI1juc5qK20O-feVsyF0LjMM7715zGuaGYE5IWC-L5bLm81mToGSOSPAtFGfmgtKpOmYYPLzf_PX5rqUI9TSdSXURbO5df4Qe2zX6HIf-6fuhysY2kUZD8-ufYjlT3ufMUQ_xtS321Ih7So9tq4P7ebZ5XE4pEpfDMMpencGlavmy96dCl6_98tm-_Pmcfm7W9_9Wi0X685z0GNnwO0ooBf7wBmqAFIIY5A4Rx0K3AXQmhG1Fx6VIxy4MZQEI4J0ngpw7LJZTbohuaMdcqx2Xm1y0b4tUn6y1V_0J7RSAlWG74ximnNONQg0UknQXNWP8ar1bdIacvr7gmW0x_SS-2rfUiE11G9pWVFsQvmcSsm4_7hKwJ7DsFMY9hyGfQ-jsmYTKyLiB8MIMIJS9g-XJ4LQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Bhat, Gautam S.</creator><creator>Shankar, Nikhil</creator><creator>Kim, Dohyeong</creator><creator>Song, Dae Jin</creator><creator>Seo, Sungchul</creator><creator>Panahi, Issa M. S.</creator><creator>Tamil, Lakshman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0647-3186</orcidid><orcidid>https://orcid.org/0000-0001-8301-6355</orcidid><orcidid>https://orcid.org/0000-0002-1852-3104</orcidid><orcidid>https://orcid.org/0000-0003-4523-9376</orcidid><orcidid>https://orcid.org/0000-0003-1963-126X</orcidid><orcidid>https://orcid.org/0000-0002-1428-1451</orcidid></search><sort><creationdate>2021</creationdate><title>Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications</title><author>Bhat, Gautam S. ; Shankar, Nikhil ; Kim, Dohyeong ; Song, Dae Jin ; Seo, Sungchul ; Panahi, Issa M. S. ; Tamil, Lakshman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-90ab20ec5fd43e7d065599e1aa2ae5ebd088317f5ce7a14049921d95d6ac250a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Asthma</topic><topic>Asthma prediction</topic><topic>Atmospheric modeling</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Diseases</topic><topic>Error analysis</topic><topic>Flow velocity</topic><topic>Flowmeters</topic><topic>Internet of Things</topic><topic>Internet-of-Things (IoT)</topic><topic>Machine learning</topic><topic>Meteorological data</topic><topic>Meteorology</topic><topic>Neural networks</topic><topic>Particulate emissions</topic><topic>particulate matter (PM)</topic><topic>peak expiratory flow rates (PEFR)</topic><topic>Predictive models</topic><topic>Raspberry Pi</topic><topic>Real-time systems</topic><topic>Respiratory system</topic><topic>Risk</topic><topic>Smartphones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhat, Gautam S.</creatorcontrib><creatorcontrib>Shankar, Nikhil</creatorcontrib><creatorcontrib>Kim, Dohyeong</creatorcontrib><creatorcontrib>Song, Dae Jin</creatorcontrib><creatorcontrib>Seo, Sungchul</creatorcontrib><creatorcontrib>Panahi, Issa M. S.</creatorcontrib><creatorcontrib>Tamil, Lakshman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhat, Gautam S.</au><au>Shankar, Nikhil</au><au>Kim, Dohyeong</au><au>Song, Dae Jin</au><au>Seo, Sungchul</au><au>Panahi, Issa M. S.</au><au>Tamil, Lakshman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>118708</spage><epage>118715</epage><pages>118708-118715</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we present an asthma risk prediction tool based on machine learning (ML). The entire tool is implemented on a smartphone as a mobile-health (m-health) application using the resources of Internet-of-Things (IoT). Peak Expiratory Flow Rates (PEFR) are commonly measured using external instruments such as peak flow meters and are well known asthama risk predictors. In this work, we find a correlation between the particulate matter (PM) found indoors and the outside weather with the PEFR. The PEFR results are classified into three categories such as 'Green' (Safe), 'Yellow' (Moderate Risk) and 'Red' (High Risk) conditions in comparison to the best peak flow value obtained by each individual. Convolutional neural network (CNN) architecture is used to map the relationship between the indoor PM and weather data to the PEFR values. The proposed method is compared with the state-of-the-art deep neural network (DNN) based techniques in terms of the root mean square and mean absolute error accuracy measures. These performance measures are better for the proposed method than other methods discussed in the literature. The entire setup is implemented on a smartphone as an app. An IoT system including a Raspberry Pi is used to collect the input data. This assistive tool can be a cost-effective tool for predicting the risk of asthma attacks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3103897</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0647-3186</orcidid><orcidid>https://orcid.org/0000-0001-8301-6355</orcidid><orcidid>https://orcid.org/0000-0002-1852-3104</orcidid><orcidid>https://orcid.org/0000-0003-4523-9376</orcidid><orcidid>https://orcid.org/0000-0003-1963-126X</orcidid><orcidid>https://orcid.org/0000-0002-1428-1451</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.118708-118715 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3103897 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Asthma Asthma prediction Atmospheric modeling convolutional neural network Convolutional neural networks Diseases Error analysis Flow velocity Flowmeters Internet of Things Internet-of-Things (IoT) Machine learning Meteorological data Meteorology Neural networks Particulate emissions particulate matter (PM) peak expiratory flow rates (PEFR) Predictive models Raspberry Pi Real-time systems Respiratory system Risk Smartphones |
title | Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Based%20Asthma%20Risk%20Prediction%20Using%20IoT%20and%20Smartphone%20Applications&rft.jtitle=IEEE%20access&rft.au=Bhat,%20Gautam%20S.&rft.date=2021&rft.volume=9&rft.spage=118708&rft.epage=118715&rft.pages=118708-118715&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3103897&rft_dat=%3Cproquest_cross%3E2568069586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568069586&rft_id=info:pmid/&rft_ieee_id=9509522&rft_doaj_id=oai_doaj_org_article_6602794b97384442805e967608470384&rfr_iscdi=true |