Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications

In this paper, we present an asthma risk prediction tool based on machine learning (ML). The entire tool is implemented on a smartphone as a mobile-health (m-health) application using the resources of Internet-of-Things (IoT). Peak Expiratory Flow Rates (PEFR) are commonly measured using external in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.118708-118715
Hauptverfasser: Bhat, Gautam S., Shankar, Nikhil, Kim, Dohyeong, Song, Dae Jin, Seo, Sungchul, Panahi, Issa M. S., Tamil, Lakshman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118715
container_issue
container_start_page 118708
container_title IEEE access
container_volume 9
creator Bhat, Gautam S.
Shankar, Nikhil
Kim, Dohyeong
Song, Dae Jin
Seo, Sungchul
Panahi, Issa M. S.
Tamil, Lakshman
description In this paper, we present an asthma risk prediction tool based on machine learning (ML). The entire tool is implemented on a smartphone as a mobile-health (m-health) application using the resources of Internet-of-Things (IoT). Peak Expiratory Flow Rates (PEFR) are commonly measured using external instruments such as peak flow meters and are well known asthama risk predictors. In this work, we find a correlation between the particulate matter (PM) found indoors and the outside weather with the PEFR. The PEFR results are classified into three categories such as 'Green' (Safe), 'Yellow' (Moderate Risk) and 'Red' (High Risk) conditions in comparison to the best peak flow value obtained by each individual. Convolutional neural network (CNN) architecture is used to map the relationship between the indoor PM and weather data to the PEFR values. The proposed method is compared with the state-of-the-art deep neural network (DNN) based techniques in terms of the root mean square and mean absolute error accuracy measures. These performance measures are better for the proposed method than other methods discussed in the literature. The entire setup is implemented on a smartphone as an app. An IoT system including a Raspberry Pi is used to collect the input data. This assistive tool can be a cost-effective tool for predicting the risk of asthma attacks.
doi_str_mv 10.1109/ACCESS.2021.3103897
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3103897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9509522</ieee_id><doaj_id>oai_doaj_org_article_6602794b97384442805e967608470384</doaj_id><sourcerecordid>2568069586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-90ab20ec5fd43e7d065599e1aa2ae5ebd088317f5ce7a14049921d95d6ac250a3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoLDUl-gS8LPa87-paOrklbg0NCHJ-FLI1juc5qK20O-feVsyF0LjMM7715zGuaGYE5IWC-L5bLm81mToGSOSPAtFGfmgtKpOmYYPLzf_PX5rqUI9TSdSXURbO5df4Qe2zX6HIf-6fuhysY2kUZD8-ufYjlT3ufMUQ_xtS321Ih7So9tq4P7ebZ5XE4pEpfDMMpencGlavmy96dCl6_98tm-_Pmcfm7W9_9Wi0X685z0GNnwO0ooBf7wBmqAFIIY5A4Rx0K3AXQmhG1Fx6VIxy4MZQEI4J0ngpw7LJZTbohuaMdcqx2Xm1y0b4tUn6y1V_0J7RSAlWG74ximnNONQg0UknQXNWP8ar1bdIacvr7gmW0x_SS-2rfUiE11G9pWVFsQvmcSsm4_7hKwJ7DsFMY9hyGfQ-jsmYTKyLiB8MIMIJS9g-XJ4LQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568069586</pqid></control><display><type>article</type><title>Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bhat, Gautam S. ; Shankar, Nikhil ; Kim, Dohyeong ; Song, Dae Jin ; Seo, Sungchul ; Panahi, Issa M. S. ; Tamil, Lakshman</creator><creatorcontrib>Bhat, Gautam S. ; Shankar, Nikhil ; Kim, Dohyeong ; Song, Dae Jin ; Seo, Sungchul ; Panahi, Issa M. S. ; Tamil, Lakshman</creatorcontrib><description>In this paper, we present an asthma risk prediction tool based on machine learning (ML). The entire tool is implemented on a smartphone as a mobile-health (m-health) application using the resources of Internet-of-Things (IoT). Peak Expiratory Flow Rates (PEFR) are commonly measured using external instruments such as peak flow meters and are well known asthama risk predictors. In this work, we find a correlation between the particulate matter (PM) found indoors and the outside weather with the PEFR. The PEFR results are classified into three categories such as 'Green' (Safe), 'Yellow' (Moderate Risk) and 'Red' (High Risk) conditions in comparison to the best peak flow value obtained by each individual. Convolutional neural network (CNN) architecture is used to map the relationship between the indoor PM and weather data to the PEFR values. The proposed method is compared with the state-of-the-art deep neural network (DNN) based techniques in terms of the root mean square and mean absolute error accuracy measures. These performance measures are better for the proposed method than other methods discussed in the literature. The entire setup is implemented on a smartphone as an app. An IoT system including a Raspberry Pi is used to collect the input data. This assistive tool can be a cost-effective tool for predicting the risk of asthma attacks.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3103897</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Asthma ; Asthma prediction ; Atmospheric modeling ; convolutional neural network ; Convolutional neural networks ; Diseases ; Error analysis ; Flow velocity ; Flowmeters ; Internet of Things ; Internet-of-Things (IoT) ; Machine learning ; Meteorological data ; Meteorology ; Neural networks ; Particulate emissions ; particulate matter (PM) ; peak expiratory flow rates (PEFR) ; Predictive models ; Raspberry Pi ; Real-time systems ; Respiratory system ; Risk ; Smartphones</subject><ispartof>IEEE access, 2021, Vol.9, p.118708-118715</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-90ab20ec5fd43e7d065599e1aa2ae5ebd088317f5ce7a14049921d95d6ac250a3</citedby><cites>FETCH-LOGICAL-c408t-90ab20ec5fd43e7d065599e1aa2ae5ebd088317f5ce7a14049921d95d6ac250a3</cites><orcidid>0000-0003-0647-3186 ; 0000-0001-8301-6355 ; 0000-0002-1852-3104 ; 0000-0003-4523-9376 ; 0000-0003-1963-126X ; 0000-0002-1428-1451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9509522$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Bhat, Gautam S.</creatorcontrib><creatorcontrib>Shankar, Nikhil</creatorcontrib><creatorcontrib>Kim, Dohyeong</creatorcontrib><creatorcontrib>Song, Dae Jin</creatorcontrib><creatorcontrib>Seo, Sungchul</creatorcontrib><creatorcontrib>Panahi, Issa M. S.</creatorcontrib><creatorcontrib>Tamil, Lakshman</creatorcontrib><title>Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we present an asthma risk prediction tool based on machine learning (ML). The entire tool is implemented on a smartphone as a mobile-health (m-health) application using the resources of Internet-of-Things (IoT). Peak Expiratory Flow Rates (PEFR) are commonly measured using external instruments such as peak flow meters and are well known asthama risk predictors. In this work, we find a correlation between the particulate matter (PM) found indoors and the outside weather with the PEFR. The PEFR results are classified into three categories such as 'Green' (Safe), 'Yellow' (Moderate Risk) and 'Red' (High Risk) conditions in comparison to the best peak flow value obtained by each individual. Convolutional neural network (CNN) architecture is used to map the relationship between the indoor PM and weather data to the PEFR values. The proposed method is compared with the state-of-the-art deep neural network (DNN) based techniques in terms of the root mean square and mean absolute error accuracy measures. These performance measures are better for the proposed method than other methods discussed in the literature. The entire setup is implemented on a smartphone as an app. An IoT system including a Raspberry Pi is used to collect the input data. This assistive tool can be a cost-effective tool for predicting the risk of asthma attacks.</description><subject>Artificial neural networks</subject><subject>Asthma</subject><subject>Asthma prediction</subject><subject>Atmospheric modeling</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Diseases</subject><subject>Error analysis</subject><subject>Flow velocity</subject><subject>Flowmeters</subject><subject>Internet of Things</subject><subject>Internet-of-Things (IoT)</subject><subject>Machine learning</subject><subject>Meteorological data</subject><subject>Meteorology</subject><subject>Neural networks</subject><subject>Particulate emissions</subject><subject>particulate matter (PM)</subject><subject>peak expiratory flow rates (PEFR)</subject><subject>Predictive models</subject><subject>Raspberry Pi</subject><subject>Real-time systems</subject><subject>Respiratory system</subject><subject>Risk</subject><subject>Smartphones</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoLDUl-gS8LPa87-paOrklbg0NCHJ-FLI1juc5qK20O-feVsyF0LjMM7715zGuaGYE5IWC-L5bLm81mToGSOSPAtFGfmgtKpOmYYPLzf_PX5rqUI9TSdSXURbO5df4Qe2zX6HIf-6fuhysY2kUZD8-ufYjlT3ufMUQ_xtS321Ih7So9tq4P7ebZ5XE4pEpfDMMpencGlavmy96dCl6_98tm-_Pmcfm7W9_9Wi0X685z0GNnwO0ooBf7wBmqAFIIY5A4Rx0K3AXQmhG1Fx6VIxy4MZQEI4J0ngpw7LJZTbohuaMdcqx2Xm1y0b4tUn6y1V_0J7RSAlWG74ximnNONQg0UknQXNWP8ar1bdIacvr7gmW0x_SS-2rfUiE11G9pWVFsQvmcSsm4_7hKwJ7DsFMY9hyGfQ-jsmYTKyLiB8MIMIJS9g-XJ4LQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Bhat, Gautam S.</creator><creator>Shankar, Nikhil</creator><creator>Kim, Dohyeong</creator><creator>Song, Dae Jin</creator><creator>Seo, Sungchul</creator><creator>Panahi, Issa M. S.</creator><creator>Tamil, Lakshman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0647-3186</orcidid><orcidid>https://orcid.org/0000-0001-8301-6355</orcidid><orcidid>https://orcid.org/0000-0002-1852-3104</orcidid><orcidid>https://orcid.org/0000-0003-4523-9376</orcidid><orcidid>https://orcid.org/0000-0003-1963-126X</orcidid><orcidid>https://orcid.org/0000-0002-1428-1451</orcidid></search><sort><creationdate>2021</creationdate><title>Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications</title><author>Bhat, Gautam S. ; Shankar, Nikhil ; Kim, Dohyeong ; Song, Dae Jin ; Seo, Sungchul ; Panahi, Issa M. S. ; Tamil, Lakshman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-90ab20ec5fd43e7d065599e1aa2ae5ebd088317f5ce7a14049921d95d6ac250a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Asthma</topic><topic>Asthma prediction</topic><topic>Atmospheric modeling</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Diseases</topic><topic>Error analysis</topic><topic>Flow velocity</topic><topic>Flowmeters</topic><topic>Internet of Things</topic><topic>Internet-of-Things (IoT)</topic><topic>Machine learning</topic><topic>Meteorological data</topic><topic>Meteorology</topic><topic>Neural networks</topic><topic>Particulate emissions</topic><topic>particulate matter (PM)</topic><topic>peak expiratory flow rates (PEFR)</topic><topic>Predictive models</topic><topic>Raspberry Pi</topic><topic>Real-time systems</topic><topic>Respiratory system</topic><topic>Risk</topic><topic>Smartphones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhat, Gautam S.</creatorcontrib><creatorcontrib>Shankar, Nikhil</creatorcontrib><creatorcontrib>Kim, Dohyeong</creatorcontrib><creatorcontrib>Song, Dae Jin</creatorcontrib><creatorcontrib>Seo, Sungchul</creatorcontrib><creatorcontrib>Panahi, Issa M. S.</creatorcontrib><creatorcontrib>Tamil, Lakshman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhat, Gautam S.</au><au>Shankar, Nikhil</au><au>Kim, Dohyeong</au><au>Song, Dae Jin</au><au>Seo, Sungchul</au><au>Panahi, Issa M. S.</au><au>Tamil, Lakshman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>118708</spage><epage>118715</epage><pages>118708-118715</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we present an asthma risk prediction tool based on machine learning (ML). The entire tool is implemented on a smartphone as a mobile-health (m-health) application using the resources of Internet-of-Things (IoT). Peak Expiratory Flow Rates (PEFR) are commonly measured using external instruments such as peak flow meters and are well known asthama risk predictors. In this work, we find a correlation between the particulate matter (PM) found indoors and the outside weather with the PEFR. The PEFR results are classified into three categories such as 'Green' (Safe), 'Yellow' (Moderate Risk) and 'Red' (High Risk) conditions in comparison to the best peak flow value obtained by each individual. Convolutional neural network (CNN) architecture is used to map the relationship between the indoor PM and weather data to the PEFR values. The proposed method is compared with the state-of-the-art deep neural network (DNN) based techniques in terms of the root mean square and mean absolute error accuracy measures. These performance measures are better for the proposed method than other methods discussed in the literature. The entire setup is implemented on a smartphone as an app. An IoT system including a Raspberry Pi is used to collect the input data. This assistive tool can be a cost-effective tool for predicting the risk of asthma attacks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3103897</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0647-3186</orcidid><orcidid>https://orcid.org/0000-0001-8301-6355</orcidid><orcidid>https://orcid.org/0000-0002-1852-3104</orcidid><orcidid>https://orcid.org/0000-0003-4523-9376</orcidid><orcidid>https://orcid.org/0000-0003-1963-126X</orcidid><orcidid>https://orcid.org/0000-0002-1428-1451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.118708-118715
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3103897
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Asthma
Asthma prediction
Atmospheric modeling
convolutional neural network
Convolutional neural networks
Diseases
Error analysis
Flow velocity
Flowmeters
Internet of Things
Internet-of-Things (IoT)
Machine learning
Meteorological data
Meteorology
Neural networks
Particulate emissions
particulate matter (PM)
peak expiratory flow rates (PEFR)
Predictive models
Raspberry Pi
Real-time systems
Respiratory system
Risk
Smartphones
title Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Based%20Asthma%20Risk%20Prediction%20Using%20IoT%20and%20Smartphone%20Applications&rft.jtitle=IEEE%20access&rft.au=Bhat,%20Gautam%20S.&rft.date=2021&rft.volume=9&rft.spage=118708&rft.epage=118715&rft.pages=118708-118715&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3103897&rft_dat=%3Cproquest_cross%3E2568069586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568069586&rft_id=info:pmid/&rft_ieee_id=9509522&rft_doaj_id=oai_doaj_org_article_6602794b97384442805e967608470384&rfr_iscdi=true