Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting
Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where image classification is an essential task to achieve an adequate diagnostic of different lesions...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.112193-112205 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112205 |
---|---|
container_issue | |
container_start_page | 112193 |
container_title | IEEE access |
container_volume | 9 |
creator | Thurnhofer-Hemsi, Karl Lopez-Rubio, Ezequiel Dominguez, Enrique Elizondo, David A. |
description | Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where image classification is an essential task to achieve an adequate diagnostic of different lesions. Melanoma is one of the best-known types of skin lesions due to the vast majority of skin cancer deaths. In this work, we propose an ensemble of improved convolutional neural networks combined with a test-time regularly spaced shifting technique for skin lesion classification. The shifting technique builds several versions of the test input image, which are shifted by displacement vectors that lie on a regular lattice in the plane of possible shifts. These shifted versions of the test image are subsequently passed on to each of the classifiers of an ensemble. Finally, all the outputs from the classifiers are combined to yield the final result. Experiment results show a significant improvement on the well-known HAM10000 dataset in terms of accuracy and F-score. In particular, it is demonstrated that our combination of ensembles with test-time regularly spaced shifting yields better performance than any of the two methods when applied alone. |
doi_str_mv | 10.1109/ACCESS.2021.3103410 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3103410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9508981</ieee_id><doaj_id>oai_doaj_org_article_ceee6ab38e6c435faba0c919af54949c</doaj_id><sourcerecordid>2562315722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c98a576bcbbfc2bb635c1abff4ea2703fd1af3fdee4d1abd28948de470775be43</originalsourceid><addsrcrecordid>eNpNUV1r3DAQNKWBhjS_IC-CPN9Vn7b1GNxrGzhaqJtnsZJXF10c6yr5Gu7fV1eH0H3QjpaZWYmpqhtG14xR_emu6zZ9v-aUs7VgVEhG31WXnNV6JZSo3_-HP1TXOe9pqbaMVHNZDf1TmMgWc4gT6UbIOfjgYD5f7YlspozPdsRMoiefEQ-ki9OfOB7PBBjJd5xfYnrKBKaB_MTdcYQ0nkh_AIcD6R-Dn8O0-1hdeBgzXr_2q-rhy-ZX9221_fH1vrvbrpxs5LxyugXV1NZZ6x23thbKMbDeSwTeUOEHBr6ciLIgO_BWy3ZA2dCmURaluKruF98hwt4cUniGdDIRgvk3iGlnIM3BjWgcItZgRYu1k0J5sECdZhq8klpqV7xuF69Dir-PmGezj8dU_pwNVzUXTDWcF5ZYWC7FnBP6t62MmnM6ZknHnNMxr-kU1c2iCuUVbwqtaKtbJv4CrjuNlQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562315722</pqid></control><display><type>article</type><title>Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Thurnhofer-Hemsi, Karl ; Lopez-Rubio, Ezequiel ; Dominguez, Enrique ; Elizondo, David A.</creator><creatorcontrib>Thurnhofer-Hemsi, Karl ; Lopez-Rubio, Ezequiel ; Dominguez, Enrique ; Elizondo, David A.</creatorcontrib><description>Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where image classification is an essential task to achieve an adequate diagnostic of different lesions. Melanoma is one of the best-known types of skin lesions due to the vast majority of skin cancer deaths. In this work, we propose an ensemble of improved convolutional neural networks combined with a test-time regularly spaced shifting technique for skin lesion classification. The shifting technique builds several versions of the test input image, which are shifted by displacement vectors that lie on a regular lattice in the plane of possible shifts. These shifted versions of the test image are subsequently passed on to each of the classifiers of an ensemble. Finally, all the outputs from the classifiers are combined to yield the final result. Experiment results show a significant improvement on the well-known HAM10000 dataset in terms of accuracy and F-score. In particular, it is demonstrated that our combination of ensembles with test-time regularly spaced shifting yields better performance than any of the two methods when applied alone.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3103410</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; classification ; Classifiers ; Convolutional neural networks ; Deep learning ; Feature extraction ; Image classification ; Image processing ; Lesions ; Medical imaging ; Melanoma ; Skin ; Skin cancer ; skin lesion ; Task analysis ; Testing time</subject><ispartof>IEEE access, 2021, Vol.9, p.112193-112205</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c98a576bcbbfc2bb635c1abff4ea2703fd1af3fdee4d1abd28948de470775be43</citedby><cites>FETCH-LOGICAL-c474t-c98a576bcbbfc2bb635c1abff4ea2703fd1af3fdee4d1abd28948de470775be43</cites><orcidid>0000-0001-6519-1213 ; 0000-0002-7398-5870 ; 0000-0001-8231-5687 ; 0000-0002-2232-4562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9508981$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Thurnhofer-Hemsi, Karl</creatorcontrib><creatorcontrib>Lopez-Rubio, Ezequiel</creatorcontrib><creatorcontrib>Dominguez, Enrique</creatorcontrib><creatorcontrib>Elizondo, David A.</creatorcontrib><title>Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting</title><title>IEEE access</title><addtitle>Access</addtitle><description>Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where image classification is an essential task to achieve an adequate diagnostic of different lesions. Melanoma is one of the best-known types of skin lesions due to the vast majority of skin cancer deaths. In this work, we propose an ensemble of improved convolutional neural networks combined with a test-time regularly spaced shifting technique for skin lesion classification. The shifting technique builds several versions of the test input image, which are shifted by displacement vectors that lie on a regular lattice in the plane of possible shifts. These shifted versions of the test image are subsequently passed on to each of the classifiers of an ensemble. Finally, all the outputs from the classifiers are combined to yield the final result. Experiment results show a significant improvement on the well-known HAM10000 dataset in terms of accuracy and F-score. In particular, it is demonstrated that our combination of ensembles with test-time regularly spaced shifting yields better performance than any of the two methods when applied alone.</description><subject>Artificial neural networks</subject><subject>classification</subject><subject>Classifiers</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Melanoma</subject><subject>Skin</subject><subject>Skin cancer</subject><subject>skin lesion</subject><subject>Task analysis</subject><subject>Testing time</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r3DAQNKWBhjS_IC-CPN9Vn7b1GNxrGzhaqJtnsZJXF10c6yr5Gu7fV1eH0H3QjpaZWYmpqhtG14xR_emu6zZ9v-aUs7VgVEhG31WXnNV6JZSo3_-HP1TXOe9pqbaMVHNZDf1TmMgWc4gT6UbIOfjgYD5f7YlspozPdsRMoiefEQ-ki9OfOB7PBBjJd5xfYnrKBKaB_MTdcYQ0nkh_AIcD6R-Dn8O0-1hdeBgzXr_2q-rhy-ZX9221_fH1vrvbrpxs5LxyugXV1NZZ6x23thbKMbDeSwTeUOEHBr6ciLIgO_BWy3ZA2dCmURaluKruF98hwt4cUniGdDIRgvk3iGlnIM3BjWgcItZgRYu1k0J5sECdZhq8klpqV7xuF69Dir-PmGezj8dU_pwNVzUXTDWcF5ZYWC7FnBP6t62MmnM6ZknHnNMxr-kU1c2iCuUVbwqtaKtbJv4CrjuNlQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Thurnhofer-Hemsi, Karl</creator><creator>Lopez-Rubio, Ezequiel</creator><creator>Dominguez, Enrique</creator><creator>Elizondo, David A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6519-1213</orcidid><orcidid>https://orcid.org/0000-0002-7398-5870</orcidid><orcidid>https://orcid.org/0000-0001-8231-5687</orcidid><orcidid>https://orcid.org/0000-0002-2232-4562</orcidid></search><sort><creationdate>2021</creationdate><title>Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting</title><author>Thurnhofer-Hemsi, Karl ; Lopez-Rubio, Ezequiel ; Dominguez, Enrique ; Elizondo, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c98a576bcbbfc2bb635c1abff4ea2703fd1af3fdee4d1abd28948de470775be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>classification</topic><topic>Classifiers</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Melanoma</topic><topic>Skin</topic><topic>Skin cancer</topic><topic>skin lesion</topic><topic>Task analysis</topic><topic>Testing time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thurnhofer-Hemsi, Karl</creatorcontrib><creatorcontrib>Lopez-Rubio, Ezequiel</creatorcontrib><creatorcontrib>Dominguez, Enrique</creatorcontrib><creatorcontrib>Elizondo, David A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thurnhofer-Hemsi, Karl</au><au>Lopez-Rubio, Ezequiel</au><au>Dominguez, Enrique</au><au>Elizondo, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>112193</spage><epage>112205</epage><pages>112193-112205</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where image classification is an essential task to achieve an adequate diagnostic of different lesions. Melanoma is one of the best-known types of skin lesions due to the vast majority of skin cancer deaths. In this work, we propose an ensemble of improved convolutional neural networks combined with a test-time regularly spaced shifting technique for skin lesion classification. The shifting technique builds several versions of the test input image, which are shifted by displacement vectors that lie on a regular lattice in the plane of possible shifts. These shifted versions of the test image are subsequently passed on to each of the classifiers of an ensemble. Finally, all the outputs from the classifiers are combined to yield the final result. Experiment results show a significant improvement on the well-known HAM10000 dataset in terms of accuracy and F-score. In particular, it is demonstrated that our combination of ensembles with test-time regularly spaced shifting yields better performance than any of the two methods when applied alone.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3103410</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6519-1213</orcidid><orcidid>https://orcid.org/0000-0002-7398-5870</orcidid><orcidid>https://orcid.org/0000-0001-8231-5687</orcidid><orcidid>https://orcid.org/0000-0002-2232-4562</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.112193-112205 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3103410 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks classification Classifiers Convolutional neural networks Deep learning Feature extraction Image classification Image processing Lesions Medical imaging Melanoma Skin Skin cancer skin lesion Task analysis Testing time |
title | Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skin%20Lesion%20Classification%20by%20Ensembles%20of%20Deep%20Convolutional%20Networks%20and%20Regularly%20Spaced%20Shifting&rft.jtitle=IEEE%20access&rft.au=Thurnhofer-Hemsi,%20Karl&rft.date=2021&rft.volume=9&rft.spage=112193&rft.epage=112205&rft.pages=112193-112205&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3103410&rft_dat=%3Cproquest_cross%3E2562315722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562315722&rft_id=info:pmid/&rft_ieee_id=9508981&rft_doaj_id=oai_doaj_org_article_ceee6ab38e6c435faba0c919af54949c&rfr_iscdi=true |