Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting

Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where image classification is an essential task to achieve an adequate diagnostic of different lesions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.112193-112205
Hauptverfasser: Thurnhofer-Hemsi, Karl, Lopez-Rubio, Ezequiel, Dominguez, Enrique, Elizondo, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112205
container_issue
container_start_page 112193
container_title IEEE access
container_volume 9
creator Thurnhofer-Hemsi, Karl
Lopez-Rubio, Ezequiel
Dominguez, Enrique
Elizondo, David A.
description Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where image classification is an essential task to achieve an adequate diagnostic of different lesions. Melanoma is one of the best-known types of skin lesions due to the vast majority of skin cancer deaths. In this work, we propose an ensemble of improved convolutional neural networks combined with a test-time regularly spaced shifting technique for skin lesion classification. The shifting technique builds several versions of the test input image, which are shifted by displacement vectors that lie on a regular lattice in the plane of possible shifts. These shifted versions of the test image are subsequently passed on to each of the classifiers of an ensemble. Finally, all the outputs from the classifiers are combined to yield the final result. Experiment results show a significant improvement on the well-known HAM10000 dataset in terms of accuracy and F-score. In particular, it is demonstrated that our combination of ensembles with test-time regularly spaced shifting yields better performance than any of the two methods when applied alone.
doi_str_mv 10.1109/ACCESS.2021.3103410
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3103410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9508981</ieee_id><doaj_id>oai_doaj_org_article_ceee6ab38e6c435faba0c919af54949c</doaj_id><sourcerecordid>2562315722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c98a576bcbbfc2bb635c1abff4ea2703fd1af3fdee4d1abd28948de470775be43</originalsourceid><addsrcrecordid>eNpNUV1r3DAQNKWBhjS_IC-CPN9Vn7b1GNxrGzhaqJtnsZJXF10c6yr5Gu7fV1eH0H3QjpaZWYmpqhtG14xR_emu6zZ9v-aUs7VgVEhG31WXnNV6JZSo3_-HP1TXOe9pqbaMVHNZDf1TmMgWc4gT6UbIOfjgYD5f7YlspozPdsRMoiefEQ-ki9OfOB7PBBjJd5xfYnrKBKaB_MTdcYQ0nkh_AIcD6R-Dn8O0-1hdeBgzXr_2q-rhy-ZX9221_fH1vrvbrpxs5LxyugXV1NZZ6x23thbKMbDeSwTeUOEHBr6ciLIgO_BWy3ZA2dCmURaluKruF98hwt4cUniGdDIRgvk3iGlnIM3BjWgcItZgRYu1k0J5sECdZhq8klpqV7xuF69Dir-PmGezj8dU_pwNVzUXTDWcF5ZYWC7FnBP6t62MmnM6ZknHnNMxr-kU1c2iCuUVbwqtaKtbJv4CrjuNlQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562315722</pqid></control><display><type>article</type><title>Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Thurnhofer-Hemsi, Karl ; Lopez-Rubio, Ezequiel ; Dominguez, Enrique ; Elizondo, David A.</creator><creatorcontrib>Thurnhofer-Hemsi, Karl ; Lopez-Rubio, Ezequiel ; Dominguez, Enrique ; Elizondo, David A.</creatorcontrib><description>Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where image classification is an essential task to achieve an adequate diagnostic of different lesions. Melanoma is one of the best-known types of skin lesions due to the vast majority of skin cancer deaths. In this work, we propose an ensemble of improved convolutional neural networks combined with a test-time regularly spaced shifting technique for skin lesion classification. The shifting technique builds several versions of the test input image, which are shifted by displacement vectors that lie on a regular lattice in the plane of possible shifts. These shifted versions of the test image are subsequently passed on to each of the classifiers of an ensemble. Finally, all the outputs from the classifiers are combined to yield the final result. Experiment results show a significant improvement on the well-known HAM10000 dataset in terms of accuracy and F-score. In particular, it is demonstrated that our combination of ensembles with test-time regularly spaced shifting yields better performance than any of the two methods when applied alone.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3103410</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; classification ; Classifiers ; Convolutional neural networks ; Deep learning ; Feature extraction ; Image classification ; Image processing ; Lesions ; Medical imaging ; Melanoma ; Skin ; Skin cancer ; skin lesion ; Task analysis ; Testing time</subject><ispartof>IEEE access, 2021, Vol.9, p.112193-112205</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c98a576bcbbfc2bb635c1abff4ea2703fd1af3fdee4d1abd28948de470775be43</citedby><cites>FETCH-LOGICAL-c474t-c98a576bcbbfc2bb635c1abff4ea2703fd1af3fdee4d1abd28948de470775be43</cites><orcidid>0000-0001-6519-1213 ; 0000-0002-7398-5870 ; 0000-0001-8231-5687 ; 0000-0002-2232-4562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9508981$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Thurnhofer-Hemsi, Karl</creatorcontrib><creatorcontrib>Lopez-Rubio, Ezequiel</creatorcontrib><creatorcontrib>Dominguez, Enrique</creatorcontrib><creatorcontrib>Elizondo, David A.</creatorcontrib><title>Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting</title><title>IEEE access</title><addtitle>Access</addtitle><description>Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where image classification is an essential task to achieve an adequate diagnostic of different lesions. Melanoma is one of the best-known types of skin lesions due to the vast majority of skin cancer deaths. In this work, we propose an ensemble of improved convolutional neural networks combined with a test-time regularly spaced shifting technique for skin lesion classification. The shifting technique builds several versions of the test input image, which are shifted by displacement vectors that lie on a regular lattice in the plane of possible shifts. These shifted versions of the test image are subsequently passed on to each of the classifiers of an ensemble. Finally, all the outputs from the classifiers are combined to yield the final result. Experiment results show a significant improvement on the well-known HAM10000 dataset in terms of accuracy and F-score. In particular, it is demonstrated that our combination of ensembles with test-time regularly spaced shifting yields better performance than any of the two methods when applied alone.</description><subject>Artificial neural networks</subject><subject>classification</subject><subject>Classifiers</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Melanoma</subject><subject>Skin</subject><subject>Skin cancer</subject><subject>skin lesion</subject><subject>Task analysis</subject><subject>Testing time</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r3DAQNKWBhjS_IC-CPN9Vn7b1GNxrGzhaqJtnsZJXF10c6yr5Gu7fV1eH0H3QjpaZWYmpqhtG14xR_emu6zZ9v-aUs7VgVEhG31WXnNV6JZSo3_-HP1TXOe9pqbaMVHNZDf1TmMgWc4gT6UbIOfjgYD5f7YlspozPdsRMoiefEQ-ki9OfOB7PBBjJd5xfYnrKBKaB_MTdcYQ0nkh_AIcD6R-Dn8O0-1hdeBgzXr_2q-rhy-ZX9221_fH1vrvbrpxs5LxyugXV1NZZ6x23thbKMbDeSwTeUOEHBr6ciLIgO_BWy3ZA2dCmURaluKruF98hwt4cUniGdDIRgvk3iGlnIM3BjWgcItZgRYu1k0J5sECdZhq8klpqV7xuF69Dir-PmGezj8dU_pwNVzUXTDWcF5ZYWC7FnBP6t62MmnM6ZknHnNMxr-kU1c2iCuUVbwqtaKtbJv4CrjuNlQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Thurnhofer-Hemsi, Karl</creator><creator>Lopez-Rubio, Ezequiel</creator><creator>Dominguez, Enrique</creator><creator>Elizondo, David A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6519-1213</orcidid><orcidid>https://orcid.org/0000-0002-7398-5870</orcidid><orcidid>https://orcid.org/0000-0001-8231-5687</orcidid><orcidid>https://orcid.org/0000-0002-2232-4562</orcidid></search><sort><creationdate>2021</creationdate><title>Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting</title><author>Thurnhofer-Hemsi, Karl ; Lopez-Rubio, Ezequiel ; Dominguez, Enrique ; Elizondo, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c98a576bcbbfc2bb635c1abff4ea2703fd1af3fdee4d1abd28948de470775be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>classification</topic><topic>Classifiers</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Melanoma</topic><topic>Skin</topic><topic>Skin cancer</topic><topic>skin lesion</topic><topic>Task analysis</topic><topic>Testing time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thurnhofer-Hemsi, Karl</creatorcontrib><creatorcontrib>Lopez-Rubio, Ezequiel</creatorcontrib><creatorcontrib>Dominguez, Enrique</creatorcontrib><creatorcontrib>Elizondo, David A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thurnhofer-Hemsi, Karl</au><au>Lopez-Rubio, Ezequiel</au><au>Dominguez, Enrique</au><au>Elizondo, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>112193</spage><epage>112205</epage><pages>112193-112205</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where image classification is an essential task to achieve an adequate diagnostic of different lesions. Melanoma is one of the best-known types of skin lesions due to the vast majority of skin cancer deaths. In this work, we propose an ensemble of improved convolutional neural networks combined with a test-time regularly spaced shifting technique for skin lesion classification. The shifting technique builds several versions of the test input image, which are shifted by displacement vectors that lie on a regular lattice in the plane of possible shifts. These shifted versions of the test image are subsequently passed on to each of the classifiers of an ensemble. Finally, all the outputs from the classifiers are combined to yield the final result. Experiment results show a significant improvement on the well-known HAM10000 dataset in terms of accuracy and F-score. In particular, it is demonstrated that our combination of ensembles with test-time regularly spaced shifting yields better performance than any of the two methods when applied alone.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3103410</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6519-1213</orcidid><orcidid>https://orcid.org/0000-0002-7398-5870</orcidid><orcidid>https://orcid.org/0000-0001-8231-5687</orcidid><orcidid>https://orcid.org/0000-0002-2232-4562</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.112193-112205
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3103410
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
classification
Classifiers
Convolutional neural networks
Deep learning
Feature extraction
Image classification
Image processing
Lesions
Medical imaging
Melanoma
Skin
Skin cancer
skin lesion
Task analysis
Testing time
title Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skin%20Lesion%20Classification%20by%20Ensembles%20of%20Deep%20Convolutional%20Networks%20and%20Regularly%20Spaced%20Shifting&rft.jtitle=IEEE%20access&rft.au=Thurnhofer-Hemsi,%20Karl&rft.date=2021&rft.volume=9&rft.spage=112193&rft.epage=112205&rft.pages=112193-112205&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3103410&rft_dat=%3Cproquest_cross%3E2562315722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562315722&rft_id=info:pmid/&rft_ieee_id=9508981&rft_doaj_id=oai_doaj_org_article_ceee6ab38e6c435faba0c919af54949c&rfr_iscdi=true