An Efficient Approach of Improving Path Loss Models for Future Mobile Networks in Enclosed Indoor Environments
Path loss is the primary factor that determines the overall coverage of networks. Designing reliable wireless communication systems requires accurate path loss prediction models. Future wireless mobile systems will rely mainly on the super-high frequency (SHF) and the millimeter-wave (mmWave) freque...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.110332-110345 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110345 |
---|---|
container_issue | |
container_start_page | 110332 |
container_title | IEEE access |
container_volume | 9 |
creator | Elmezughi, Mohamed K. Afullo, Thomas J. |
description | Path loss is the primary factor that determines the overall coverage of networks. Designing reliable wireless communication systems requires accurate path loss prediction models. Future wireless mobile systems will rely mainly on the super-high frequency (SHF) and the millimeter-wave (mmWave) frequency bands due to the massive available bandwidths that will meet projected users' demand, such as the needs of the fifth-generation ( 5G ) wireless systems and other high-speed multimedia services. However, these bands are more sensitive and exhibit a different propagation behavior compared to the frequency bands below 6~GHz . Hence, improving the existing models and developing new models are vital for characterizing the wireless communication channel in both indoor and outdoor environments for future SHF and mmWave services. This paper proposes an efficient improvement of the well-known close-in (CI) free space reference distance model and the floating-intercept (FI) model. Real measured data was taken for both line-of-sight (LOS) and non-line-of-sight (NLOS) communication scenarios in a typical indoor corridor environment at three selected frequencies within the SHF band, namely 14~GHz , 18~GHz , and 22~GHz . The research finding of this work reveals that the proposed models have better performance in terms of their accuracy of fitting real measured data collected from measurement campaigns. In addition, this work studies the impact of the angle of arrival and the antenna heights on the current and improved CI and FI models. The results show that the improved models provide better stability and sensitivity to the change of these parameters. Furthermore, the mean square error between the models and their improved versions were presented. Finally, this paper shows that shadow fading's standard deviation can have a notable reduction in both the LOS and NLOS scenarios (especially in the NLOS), which means higher precision in predicting the path loss. |
doi_str_mv | 10.1109/ACCESS.2021.3102991 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3102991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9508361</ieee_id><doaj_id>oai_doaj_org_article_2205a2073bab4aa485b4ae1dfa8efd3f</doaj_id><sourcerecordid>2560141603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c46b99be6584b23f0a7470b486489e978cffa704e41241b3f38a52b6f59ec1eb3</originalsourceid><addsrcrecordid>eNpNUV1rGzEQFKWFBje_IC-CPNvV90mPxjitwWkLaZ-FdLdK5JwlVzqn9N9H6YVQPWiXYWZ22UHoipIVpcR8Xm8227u7FSOMrjglzBj6Dl0wqsySS67e_9d_RJe1Hkh7ukGyu0BpnfA2hNhHSBNen04lu_4B54B3x9Y_xXSPf7jpAe9zrfg2DzBWHHLBN-fpXKAhPo6Av8H0J5fHimOzS_2YKwx4l4bcmNv0FEtOxzagfkIfghsrXL7WBfp1s_25-brcf_-y26z3y14QPbVfeWM8KKmFZzwQ14mOeKGV0AZMp_sQXEcECMoE9Txw7STzKkgDPQXPF2g3-w7ZHeypxKMrf2120f4Dcrm3rkyxH8EyRqRjpOPeeeGc0LIVoENwGsLQrBfoevZq9_h9hjrZQz6X1Na3TCpCBVWENxafWX1plyoQ3qZSYl9ysnNO9iUn-5pTU13NqggAbwojieaK8md8bI7m</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560141603</pqid></control><display><type>article</type><title>An Efficient Approach of Improving Path Loss Models for Future Mobile Networks in Enclosed Indoor Environments</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Elmezughi, Mohamed K. ; Afullo, Thomas J.</creator><creatorcontrib>Elmezughi, Mohamed K. ; Afullo, Thomas J.</creatorcontrib><description><![CDATA[Path loss is the primary factor that determines the overall coverage of networks. Designing reliable wireless communication systems requires accurate path loss prediction models. Future wireless mobile systems will rely mainly on the super-high frequency (SHF) and the millimeter-wave (mmWave) frequency bands due to the massive available bandwidths that will meet projected users' demand, such as the needs of the fifth-generation (<inline-formula> <tex-math notation="LaTeX">5G </tex-math></inline-formula>) wireless systems and other high-speed multimedia services. However, these bands are more sensitive and exhibit a different propagation behavior compared to the frequency bands below <inline-formula> <tex-math notation="LaTeX">6~GHz </tex-math></inline-formula>. Hence, improving the existing models and developing new models are vital for characterizing the wireless communication channel in both indoor and outdoor environments for future SHF and mmWave services. This paper proposes an efficient improvement of the well-known close-in (CI) free space reference distance model and the floating-intercept (FI) model. Real measured data was taken for both line-of-sight (LOS) and non-line-of-sight (NLOS) communication scenarios in a typical indoor corridor environment at three selected frequencies within the SHF band, namely <inline-formula> <tex-math notation="LaTeX">14~GHz </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">18~GHz </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">22~GHz </tex-math></inline-formula>. The research finding of this work reveals that the proposed models have better performance in terms of their accuracy of fitting real measured data collected from measurement campaigns. In addition, this work studies the impact of the angle of arrival and the antenna heights on the current and improved CI and FI models. The results show that the improved models provide better stability and sensitivity to the change of these parameters. Furthermore, the mean square error between the models and their improved versions were presented. Finally, this paper shows that shadow fading's standard deviation can have a notable reduction in both the LOS and NLOS scenarios (especially in the NLOS), which means higher precision in predicting the path loss.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3102991</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">5G ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">6G ; Angle of arrival ; antenna height ; Attenuation ; channel modeling ; Indoor environments ; Line of sight communication ; Loss measurement ; Mathematical model ; Millimeter waves ; millimeter-wave ; Multimedia ; Parameter sensitivity ; Path loss ; Prediction models ; Predictive models ; Propagation losses ; propagation measurements ; radio propagation ; Superhigh frequencies ; Wireless communication ; Wireless communication systems ; Wireless communications ; Wireless networks</subject><ispartof>IEEE access, 2021, Vol.9, p.110332-110345</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c46b99be6584b23f0a7470b486489e978cffa704e41241b3f38a52b6f59ec1eb3</citedby><cites>FETCH-LOGICAL-c408t-c46b99be6584b23f0a7470b486489e978cffa704e41241b3f38a52b6f59ec1eb3</cites><orcidid>0000-0001-8791-0311 ; 0000-0002-2710-4577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9508361$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Elmezughi, Mohamed K.</creatorcontrib><creatorcontrib>Afullo, Thomas J.</creatorcontrib><title>An Efficient Approach of Improving Path Loss Models for Future Mobile Networks in Enclosed Indoor Environments</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Path loss is the primary factor that determines the overall coverage of networks. Designing reliable wireless communication systems requires accurate path loss prediction models. Future wireless mobile systems will rely mainly on the super-high frequency (SHF) and the millimeter-wave (mmWave) frequency bands due to the massive available bandwidths that will meet projected users' demand, such as the needs of the fifth-generation (<inline-formula> <tex-math notation="LaTeX">5G </tex-math></inline-formula>) wireless systems and other high-speed multimedia services. However, these bands are more sensitive and exhibit a different propagation behavior compared to the frequency bands below <inline-formula> <tex-math notation="LaTeX">6~GHz </tex-math></inline-formula>. Hence, improving the existing models and developing new models are vital for characterizing the wireless communication channel in both indoor and outdoor environments for future SHF and mmWave services. This paper proposes an efficient improvement of the well-known close-in (CI) free space reference distance model and the floating-intercept (FI) model. Real measured data was taken for both line-of-sight (LOS) and non-line-of-sight (NLOS) communication scenarios in a typical indoor corridor environment at three selected frequencies within the SHF band, namely <inline-formula> <tex-math notation="LaTeX">14~GHz </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">18~GHz </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">22~GHz </tex-math></inline-formula>. The research finding of this work reveals that the proposed models have better performance in terms of their accuracy of fitting real measured data collected from measurement campaigns. In addition, this work studies the impact of the angle of arrival and the antenna heights on the current and improved CI and FI models. The results show that the improved models provide better stability and sensitivity to the change of these parameters. Furthermore, the mean square error between the models and their improved versions were presented. Finally, this paper shows that shadow fading's standard deviation can have a notable reduction in both the LOS and NLOS scenarios (especially in the NLOS), which means higher precision in predicting the path loss.]]></description><subject>5G mobile communication</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">5G</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">6G</subject><subject>Angle of arrival</subject><subject>antenna height</subject><subject>Attenuation</subject><subject>channel modeling</subject><subject>Indoor environments</subject><subject>Line of sight communication</subject><subject>Loss measurement</subject><subject>Mathematical model</subject><subject>Millimeter waves</subject><subject>millimeter-wave</subject><subject>Multimedia</subject><subject>Parameter sensitivity</subject><subject>Path loss</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Propagation losses</subject><subject>propagation measurements</subject><subject>radio propagation</subject><subject>Superhigh frequencies</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQFKWFBje_IC-CPNvV90mPxjitwWkLaZ-FdLdK5JwlVzqn9N9H6YVQPWiXYWZ22UHoipIVpcR8Xm8227u7FSOMrjglzBj6Dl0wqsySS67e_9d_RJe1Hkh7ukGyu0BpnfA2hNhHSBNen04lu_4B54B3x9Y_xXSPf7jpAe9zrfg2DzBWHHLBN-fpXKAhPo6Av8H0J5fHimOzS_2YKwx4l4bcmNv0FEtOxzagfkIfghsrXL7WBfp1s_25-brcf_-y26z3y14QPbVfeWM8KKmFZzwQ14mOeKGV0AZMp_sQXEcECMoE9Txw7STzKkgDPQXPF2g3-w7ZHeypxKMrf2120f4Dcrm3rkyxH8EyRqRjpOPeeeGc0LIVoENwGsLQrBfoevZq9_h9hjrZQz6X1Na3TCpCBVWENxafWX1plyoQ3qZSYl9ysnNO9iUn-5pTU13NqggAbwojieaK8md8bI7m</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Elmezughi, Mohamed K.</creator><creator>Afullo, Thomas J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8791-0311</orcidid><orcidid>https://orcid.org/0000-0002-2710-4577</orcidid></search><sort><creationdate>2021</creationdate><title>An Efficient Approach of Improving Path Loss Models for Future Mobile Networks in Enclosed Indoor Environments</title><author>Elmezughi, Mohamed K. ; Afullo, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c46b99be6584b23f0a7470b486489e978cffa704e41241b3f38a52b6f59ec1eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5G mobile communication</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">5G</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">6G</topic><topic>Angle of arrival</topic><topic>antenna height</topic><topic>Attenuation</topic><topic>channel modeling</topic><topic>Indoor environments</topic><topic>Line of sight communication</topic><topic>Loss measurement</topic><topic>Mathematical model</topic><topic>Millimeter waves</topic><topic>millimeter-wave</topic><topic>Multimedia</topic><topic>Parameter sensitivity</topic><topic>Path loss</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Propagation losses</topic><topic>propagation measurements</topic><topic>radio propagation</topic><topic>Superhigh frequencies</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elmezughi, Mohamed K.</creatorcontrib><creatorcontrib>Afullo, Thomas J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elmezughi, Mohamed K.</au><au>Afullo, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Approach of Improving Path Loss Models for Future Mobile Networks in Enclosed Indoor Environments</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>110332</spage><epage>110345</epage><pages>110332-110345</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Path loss is the primary factor that determines the overall coverage of networks. Designing reliable wireless communication systems requires accurate path loss prediction models. Future wireless mobile systems will rely mainly on the super-high frequency (SHF) and the millimeter-wave (mmWave) frequency bands due to the massive available bandwidths that will meet projected users' demand, such as the needs of the fifth-generation (<inline-formula> <tex-math notation="LaTeX">5G </tex-math></inline-formula>) wireless systems and other high-speed multimedia services. However, these bands are more sensitive and exhibit a different propagation behavior compared to the frequency bands below <inline-formula> <tex-math notation="LaTeX">6~GHz </tex-math></inline-formula>. Hence, improving the existing models and developing new models are vital for characterizing the wireless communication channel in both indoor and outdoor environments for future SHF and mmWave services. This paper proposes an efficient improvement of the well-known close-in (CI) free space reference distance model and the floating-intercept (FI) model. Real measured data was taken for both line-of-sight (LOS) and non-line-of-sight (NLOS) communication scenarios in a typical indoor corridor environment at three selected frequencies within the SHF band, namely <inline-formula> <tex-math notation="LaTeX">14~GHz </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">18~GHz </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">22~GHz </tex-math></inline-formula>. The research finding of this work reveals that the proposed models have better performance in terms of their accuracy of fitting real measured data collected from measurement campaigns. In addition, this work studies the impact of the angle of arrival and the antenna heights on the current and improved CI and FI models. The results show that the improved models provide better stability and sensitivity to the change of these parameters. Furthermore, the mean square error between the models and their improved versions were presented. Finally, this paper shows that shadow fading's standard deviation can have a notable reduction in both the LOS and NLOS scenarios (especially in the NLOS), which means higher precision in predicting the path loss.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3102991</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8791-0311</orcidid><orcidid>https://orcid.org/0000-0002-2710-4577</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.110332-110345 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3102991 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | 5G mobile communication <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">5G <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">6G Angle of arrival antenna height Attenuation channel modeling Indoor environments Line of sight communication Loss measurement Mathematical model Millimeter waves millimeter-wave Multimedia Parameter sensitivity Path loss Prediction models Predictive models Propagation losses propagation measurements radio propagation Superhigh frequencies Wireless communication Wireless communication systems Wireless communications Wireless networks |
title | An Efficient Approach of Improving Path Loss Models for Future Mobile Networks in Enclosed Indoor Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Approach%20of%20Improving%20Path%20Loss%20Models%20for%20Future%20Mobile%20Networks%20in%20Enclosed%20Indoor%20Environments&rft.jtitle=IEEE%20access&rft.au=Elmezughi,%20Mohamed%20K.&rft.date=2021&rft.volume=9&rft.spage=110332&rft.epage=110345&rft.pages=110332-110345&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3102991&rft_dat=%3Cproquest_cross%3E2560141603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560141603&rft_id=info:pmid/&rft_ieee_id=9508361&rft_doaj_id=oai_doaj_org_article_2205a2073bab4aa485b4ae1dfa8efd3f&rfr_iscdi=true |