Finite-Time Synchronization of Clifford-Valued Neural Networks With Infinite Distributed Delays and Impulses
We study the issue of finite-time synchronization pertaining to a class of Clifford-valued neural networks with discrete and infinite distributed delays and impulse phenomena. Since multiplication of Clifford numbers is of non-commutativity, we decompose the original n -dimensional Clifford-valued...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.111050-111061 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111061 |
---|---|
container_issue | |
container_start_page | 111050 |
container_title | IEEE access |
container_volume | 9 |
creator | Boonsatit, N. Sriraman, R. Rojsiraphisal, T. Lim, C. P. Hammachukiattikul, P. Rajchakit, G. |
description | We study the issue of finite-time synchronization pertaining to a class of Clifford-valued neural networks with discrete and infinite distributed delays and impulse phenomena. Since multiplication of Clifford numbers is of non-commutativity, we decompose the original n -dimensional Clifford-valued drive and response systems into the equivalent 2^{m} -dimensional real-valued counterparts. We then derive the finite-time synchronization criteria concerning the decomposed real-valued drive and response models through new Lyapunov-Krasovskii functional and suitable controller as well as new computational techniques. We also demonstrate the usefulness of the results through a simulation example. |
doi_str_mv | 10.1109/ACCESS.2021.3102585 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3102585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9507475</ieee_id><doaj_id>oai_doaj_org_article_62b94031b0f04c66bdae832f7bd9c744</doaj_id><sourcerecordid>2560911764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d13f2afecdfffd493e9dcf9e7d09cf60aeb2cdaa6fd6192adf3543c3199b91673</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIoWaJD4C3whkLNcPiTKPAZK0howmoPT9khQ5G5DRxZdkkLgfn3lKAi6l1kMZmYXmKJYMrpijKovN217t9utOOVsJRjl9br-UFxwJlUpaiE__rd_LhYp7ek064mqm4uiv_eDz1A--gOQ3WmwTzEM_q_JPgwkIGl7jxiiK3-afgRHvsMYTT9BfgnxOZFfPj-RzYCvKeTWpxx9N-ZJeQu9OSViBkc2h-PYJ0hXxSc007J4w8vix_3dY_ut3D583bQ329JWdJ1LxwRyg2AdIrpKCVDOooLGUWVRUgMdt84YiU4yxY1DUVfCCqZUp5hsxGWxmXNdMHt9jP5g4kkH4_UrEeJvbWL2tgcteacqKlhHkVZWys4ZWAuOTeeUbapqyrqes44x_BkhZb0PYxym9zWvJVWMNfKsErPKxpBSBHy_yqg-t6TnlvS5Jf3W0uRazi4PAO8OVdOmamrxD-KdkCE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560911764</pqid></control><display><type>article</type><title>Finite-Time Synchronization of Clifford-Valued Neural Networks With Infinite Distributed Delays and Impulses</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Boonsatit, N. ; Sriraman, R. ; Rojsiraphisal, T. ; Lim, C. P. ; Hammachukiattikul, P. ; Rajchakit, G.</creator><creatorcontrib>Boonsatit, N. ; Sriraman, R. ; Rojsiraphisal, T. ; Lim, C. P. ; Hammachukiattikul, P. ; Rajchakit, G.</creatorcontrib><description><![CDATA[We study the issue of finite-time synchronization pertaining to a class of Clifford-valued neural networks with discrete and infinite distributed delays and impulse phenomena. Since multiplication of Clifford numbers is of non-commutativity, we decompose the original <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-dimensional Clifford-valued drive and response systems into the equivalent <inline-formula> <tex-math notation="LaTeX">2^{m} </tex-math></inline-formula>-dimensional real-valued counterparts. We then derive the finite-time synchronization criteria concerning the decomposed real-valued drive and response models through new Lyapunov-Krasovskii functional and suitable controller as well as new computational techniques. We also demonstrate the usefulness of the results through a simulation example.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3102585</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algebra ; Artificial neural networks ; Clifford-valued neural networks ; Commutativity ; Computational modeling ; Decomposition ; Delay effects ; Delays ; finite-time synchronization ; infinite distributed delay ; Lyapunov-Krasovskii fractional ; Multiplication ; Neural networks ; Synchronization ; Task analysis ; Time synchronization</subject><ispartof>IEEE access, 2021, Vol.9, p.111050-111061</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d13f2afecdfffd493e9dcf9e7d09cf60aeb2cdaa6fd6192adf3543c3199b91673</citedby><cites>FETCH-LOGICAL-c408t-d13f2afecdfffd493e9dcf9e7d09cf60aeb2cdaa6fd6192adf3543c3199b91673</cites><orcidid>0000-0002-1384-4099 ; 0000-0002-7062-0446 ; 0000-0003-4191-9083 ; 0000-0003-0267-110X ; 0000-0001-6053-6219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9507475$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Boonsatit, N.</creatorcontrib><creatorcontrib>Sriraman, R.</creatorcontrib><creatorcontrib>Rojsiraphisal, T.</creatorcontrib><creatorcontrib>Lim, C. P.</creatorcontrib><creatorcontrib>Hammachukiattikul, P.</creatorcontrib><creatorcontrib>Rajchakit, G.</creatorcontrib><title>Finite-Time Synchronization of Clifford-Valued Neural Networks With Infinite Distributed Delays and Impulses</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[We study the issue of finite-time synchronization pertaining to a class of Clifford-valued neural networks with discrete and infinite distributed delays and impulse phenomena. Since multiplication of Clifford numbers is of non-commutativity, we decompose the original <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-dimensional Clifford-valued drive and response systems into the equivalent <inline-formula> <tex-math notation="LaTeX">2^{m} </tex-math></inline-formula>-dimensional real-valued counterparts. We then derive the finite-time synchronization criteria concerning the decomposed real-valued drive and response models through new Lyapunov-Krasovskii functional and suitable controller as well as new computational techniques. We also demonstrate the usefulness of the results through a simulation example.]]></description><subject>Algebra</subject><subject>Artificial neural networks</subject><subject>Clifford-valued neural networks</subject><subject>Commutativity</subject><subject>Computational modeling</subject><subject>Decomposition</subject><subject>Delay effects</subject><subject>Delays</subject><subject>finite-time synchronization</subject><subject>infinite distributed delay</subject><subject>Lyapunov-Krasovskii fractional</subject><subject>Multiplication</subject><subject>Neural networks</subject><subject>Synchronization</subject><subject>Task analysis</subject><subject>Time synchronization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIoWaJD4C3whkLNcPiTKPAZK0howmoPT9khQ5G5DRxZdkkLgfn3lKAi6l1kMZmYXmKJYMrpijKovN217t9utOOVsJRjl9br-UFxwJlUpaiE__rd_LhYp7ek064mqm4uiv_eDz1A--gOQ3WmwTzEM_q_JPgwkIGl7jxiiK3-afgRHvsMYTT9BfgnxOZFfPj-RzYCvKeTWpxx9N-ZJeQu9OSViBkc2h-PYJ0hXxSc007J4w8vix_3dY_ut3D583bQ329JWdJ1LxwRyg2AdIrpKCVDOooLGUWVRUgMdt84YiU4yxY1DUVfCCqZUp5hsxGWxmXNdMHt9jP5g4kkH4_UrEeJvbWL2tgcteacqKlhHkVZWys4ZWAuOTeeUbapqyrqes44x_BkhZb0PYxym9zWvJVWMNfKsErPKxpBSBHy_yqg-t6TnlvS5Jf3W0uRazi4PAO8OVdOmamrxD-KdkCE</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Boonsatit, N.</creator><creator>Sriraman, R.</creator><creator>Rojsiraphisal, T.</creator><creator>Lim, C. P.</creator><creator>Hammachukiattikul, P.</creator><creator>Rajchakit, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1384-4099</orcidid><orcidid>https://orcid.org/0000-0002-7062-0446</orcidid><orcidid>https://orcid.org/0000-0003-4191-9083</orcidid><orcidid>https://orcid.org/0000-0003-0267-110X</orcidid><orcidid>https://orcid.org/0000-0001-6053-6219</orcidid></search><sort><creationdate>2021</creationdate><title>Finite-Time Synchronization of Clifford-Valued Neural Networks With Infinite Distributed Delays and Impulses</title><author>Boonsatit, N. ; Sriraman, R. ; Rojsiraphisal, T. ; Lim, C. P. ; Hammachukiattikul, P. ; Rajchakit, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d13f2afecdfffd493e9dcf9e7d09cf60aeb2cdaa6fd6192adf3543c3199b91673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Artificial neural networks</topic><topic>Clifford-valued neural networks</topic><topic>Commutativity</topic><topic>Computational modeling</topic><topic>Decomposition</topic><topic>Delay effects</topic><topic>Delays</topic><topic>finite-time synchronization</topic><topic>infinite distributed delay</topic><topic>Lyapunov-Krasovskii fractional</topic><topic>Multiplication</topic><topic>Neural networks</topic><topic>Synchronization</topic><topic>Task analysis</topic><topic>Time synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boonsatit, N.</creatorcontrib><creatorcontrib>Sriraman, R.</creatorcontrib><creatorcontrib>Rojsiraphisal, T.</creatorcontrib><creatorcontrib>Lim, C. P.</creatorcontrib><creatorcontrib>Hammachukiattikul, P.</creatorcontrib><creatorcontrib>Rajchakit, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boonsatit, N.</au><au>Sriraman, R.</au><au>Rojsiraphisal, T.</au><au>Lim, C. P.</au><au>Hammachukiattikul, P.</au><au>Rajchakit, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Time Synchronization of Clifford-Valued Neural Networks With Infinite Distributed Delays and Impulses</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>111050</spage><epage>111061</epage><pages>111050-111061</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[We study the issue of finite-time synchronization pertaining to a class of Clifford-valued neural networks with discrete and infinite distributed delays and impulse phenomena. Since multiplication of Clifford numbers is of non-commutativity, we decompose the original <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-dimensional Clifford-valued drive and response systems into the equivalent <inline-formula> <tex-math notation="LaTeX">2^{m} </tex-math></inline-formula>-dimensional real-valued counterparts. We then derive the finite-time synchronization criteria concerning the decomposed real-valued drive and response models through new Lyapunov-Krasovskii functional and suitable controller as well as new computational techniques. We also demonstrate the usefulness of the results through a simulation example.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3102585</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1384-4099</orcidid><orcidid>https://orcid.org/0000-0002-7062-0446</orcidid><orcidid>https://orcid.org/0000-0003-4191-9083</orcidid><orcidid>https://orcid.org/0000-0003-0267-110X</orcidid><orcidid>https://orcid.org/0000-0001-6053-6219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.111050-111061 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3102585 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algebra Artificial neural networks Clifford-valued neural networks Commutativity Computational modeling Decomposition Delay effects Delays finite-time synchronization infinite distributed delay Lyapunov-Krasovskii fractional Multiplication Neural networks Synchronization Task analysis Time synchronization |
title | Finite-Time Synchronization of Clifford-Valued Neural Networks With Infinite Distributed Delays and Impulses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Time%20Synchronization%20of%20Clifford-Valued%20Neural%20Networks%20With%20Infinite%20Distributed%20Delays%20and%20Impulses&rft.jtitle=IEEE%20access&rft.au=Boonsatit,%20N.&rft.date=2021&rft.volume=9&rft.spage=111050&rft.epage=111061&rft.pages=111050-111061&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3102585&rft_dat=%3Cproquest_cross%3E2560911764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560911764&rft_id=info:pmid/&rft_ieee_id=9507475&rft_doaj_id=oai_doaj_org_article_62b94031b0f04c66bdae832f7bd9c744&rfr_iscdi=true |