Optimization of Piezoelectric Sensor-Actuator for Plate Vibration Control Using Evolutionary Computation: Modeling, Simulation and Experimentation
The development of lightweight, stronger, and more flexible structures has received the utmost interest from many researchers. For this reason, piezoelectric materials, with their inherent electromechanical coupling, have been widely incorporated in the development of such structures to attenuate th...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.100725-100734 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100734 |
---|---|
container_issue | |
container_start_page | 100725 |
container_title | IEEE access |
container_volume | 9 |
creator | Muthalif, Asan G. A. Nor, Khairul A. M. Wahid, Azni Nabela Ali, Abdelrahman |
description | The development of lightweight, stronger, and more flexible structures has received the utmost interest from many researchers. For this reason, piezoelectric materials, with their inherent electromechanical coupling, have been widely incorporated in the development of such structures to attenuate their vibrations. However, one of the main challenges is to find the optimal control and sensor-actuator placement. This paper presents an active vibration control for flexible structures, whereby a simply supported plate is taken as the benchmark model. A feedback controller with a collocated sensor-actuator configuration is used. Both disturbance and control signal acting on the plate is created by using piezoelectric (PZT) patches. The analytical model is derived based on the Euler-Bernoulli model. The Optimal location of the collocated sensor-actuator, as well as PID controller gains, are determined using Ant Colony Optimization (ACO) technique, then compared with the Genetic Algorithm (GA) and enumerative method (EM). Optimization in this paper is based on minimizing frequency average energy. The optimal performance value of piezoelectric patch sensor-actuator position and PID controller gains are verified experimentally. It was found that PID controller gains and collocated sensor-actuator location optimizations using ACO, GA and enumerative methods give similar results, which implies the effectiveness of ACO as an optimization technique. More than 20 % of attenuation achieved using the available hardware setup. |
doi_str_mv | 10.1109/ACCESS.2021.3096972 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3096972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9481877</ieee_id><doaj_id>oai_doaj_org_article_6fe2026382c64c61b8339c025581720d</doaj_id><sourcerecordid>2553595246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-63b46a4fb6fcede79ed68885a02d470900f5240339f6093b402fae40d941fd833</originalsourceid><addsrcrecordid>eNpNkd9qHCEUxofQQkKSJ8iNkNvO1n_jaO-WYdsGUhLYJrfi6jG4zI5TxyltHqNPHDcTQgXxcPx9xw-_qroieEUIVp_XXbfZblcUU7JiWAnV0pPqjBKhatYw8eG_-rS6nKY9LkuWVtOeVf_uxhwO4dnkEAcUPboP8ByhB5tTsGgLwxRTvbZ5Njkm5Mu-700G9Bh2aRF1ccgp9uhhCsMT2vyO_Xzsm_S3XB3GOb9iX9CP6KAvyCe0DYe5X8RmcGjzZ4QUDjAs5EX10Zt-gsu387x6-Lr52X2vb---3XTr29pyLHMt2I4Lw_1OeAsOWgVOSCkbg6njLVYY-4ZyzJjyAqsCY-oNcOwUJ95Jxs6rm2Wui2avx-KgWNbRBP3aiOlJm5SD7UELD-V7BZPUCm4F2RW5spg2jSQtxa7Mul5mjSn-mmHKeh_nNBT7ukCsUcWKKBRbKJviNCXw768SrI9Z6iVLfcxSv2VZVFeLKgDAu0JxSWTbshfzYpyA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553595246</pqid></control><display><type>article</type><title>Optimization of Piezoelectric Sensor-Actuator for Plate Vibration Control Using Evolutionary Computation: Modeling, Simulation and Experimentation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Muthalif, Asan G. A. ; Nor, Khairul A. M. ; Wahid, Azni Nabela ; Ali, Abdelrahman</creator><creatorcontrib>Muthalif, Asan G. A. ; Nor, Khairul A. M. ; Wahid, Azni Nabela ; Ali, Abdelrahman</creatorcontrib><description>The development of lightweight, stronger, and more flexible structures has received the utmost interest from many researchers. For this reason, piezoelectric materials, with their inherent electromechanical coupling, have been widely incorporated in the development of such structures to attenuate their vibrations. However, one of the main challenges is to find the optimal control and sensor-actuator placement. This paper presents an active vibration control for flexible structures, whereby a simply supported plate is taken as the benchmark model. A feedback controller with a collocated sensor-actuator configuration is used. Both disturbance and control signal acting on the plate is created by using piezoelectric (PZT) patches. The analytical model is derived based on the Euler-Bernoulli model. The Optimal location of the collocated sensor-actuator, as well as PID controller gains, are determined using Ant Colony Optimization (ACO) technique, then compared with the Genetic Algorithm (GA) and enumerative method (EM). Optimization in this paper is based on minimizing frequency average energy. The optimal performance value of piezoelectric patch sensor-actuator position and PID controller gains are verified experimentally. It was found that PID controller gains and collocated sensor-actuator location optimizations using ACO, GA and enumerative methods give similar results, which implies the effectiveness of ACO as an optimization technique. More than 20 % of attenuation achieved using the available hardware setup.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3096972</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active control ; Active vibration control ; Actuator position ; Ant colony optimization ; Attenuation ; Evolutionary algorithms ; Evolutionary computation ; Experimentation ; Feedback control ; Flexible structures ; generic algorithm ; Genetic algorithms ; Mathematical model ; Mathematical models ; modeling and simulation ; Optimal control ; Optimization ; optimization of sensor-actuator location ; Optimization techniques ; piezoelectric ; Piezoelectricity ; Position sensing ; Proportional integral derivative ; Rigidity ; Sensors ; Strain ; Vibration control ; Vibrations</subject><ispartof>IEEE access, 2021, Vol.9, p.100725-100734</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-63b46a4fb6fcede79ed68885a02d470900f5240339f6093b402fae40d941fd833</citedby><cites>FETCH-LOGICAL-c408t-63b46a4fb6fcede79ed68885a02d470900f5240339f6093b402fae40d941fd833</cites><orcidid>0000-0002-0070-7247 ; 0000-0003-0914-9701 ; 0000-0002-7304-5483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9481877$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Muthalif, Asan G. A.</creatorcontrib><creatorcontrib>Nor, Khairul A. M.</creatorcontrib><creatorcontrib>Wahid, Azni Nabela</creatorcontrib><creatorcontrib>Ali, Abdelrahman</creatorcontrib><title>Optimization of Piezoelectric Sensor-Actuator for Plate Vibration Control Using Evolutionary Computation: Modeling, Simulation and Experimentation</title><title>IEEE access</title><addtitle>Access</addtitle><description>The development of lightweight, stronger, and more flexible structures has received the utmost interest from many researchers. For this reason, piezoelectric materials, with their inherent electromechanical coupling, have been widely incorporated in the development of such structures to attenuate their vibrations. However, one of the main challenges is to find the optimal control and sensor-actuator placement. This paper presents an active vibration control for flexible structures, whereby a simply supported plate is taken as the benchmark model. A feedback controller with a collocated sensor-actuator configuration is used. Both disturbance and control signal acting on the plate is created by using piezoelectric (PZT) patches. The analytical model is derived based on the Euler-Bernoulli model. The Optimal location of the collocated sensor-actuator, as well as PID controller gains, are determined using Ant Colony Optimization (ACO) technique, then compared with the Genetic Algorithm (GA) and enumerative method (EM). Optimization in this paper is based on minimizing frequency average energy. The optimal performance value of piezoelectric patch sensor-actuator position and PID controller gains are verified experimentally. It was found that PID controller gains and collocated sensor-actuator location optimizations using ACO, GA and enumerative methods give similar results, which implies the effectiveness of ACO as an optimization technique. More than 20 % of attenuation achieved using the available hardware setup.</description><subject>Active control</subject><subject>Active vibration control</subject><subject>Actuator position</subject><subject>Ant colony optimization</subject><subject>Attenuation</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Experimentation</subject><subject>Feedback control</subject><subject>Flexible structures</subject><subject>generic algorithm</subject><subject>Genetic algorithms</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>modeling and simulation</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>optimization of sensor-actuator location</subject><subject>Optimization techniques</subject><subject>piezoelectric</subject><subject>Piezoelectricity</subject><subject>Position sensing</subject><subject>Proportional integral derivative</subject><subject>Rigidity</subject><subject>Sensors</subject><subject>Strain</subject><subject>Vibration control</subject><subject>Vibrations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd9qHCEUxofQQkKSJ8iNkNvO1n_jaO-WYdsGUhLYJrfi6jG4zI5TxyltHqNPHDcTQgXxcPx9xw-_qroieEUIVp_XXbfZblcUU7JiWAnV0pPqjBKhatYw8eG_-rS6nKY9LkuWVtOeVf_uxhwO4dnkEAcUPboP8ByhB5tTsGgLwxRTvbZ5Njkm5Mu-700G9Bh2aRF1ccgp9uhhCsMT2vyO_Xzsm_S3XB3GOb9iX9CP6KAvyCe0DYe5X8RmcGjzZ4QUDjAs5EX10Zt-gsu387x6-Lr52X2vb---3XTr29pyLHMt2I4Lw_1OeAsOWgVOSCkbg6njLVYY-4ZyzJjyAqsCY-oNcOwUJ95Jxs6rm2Wui2avx-KgWNbRBP3aiOlJm5SD7UELD-V7BZPUCm4F2RW5spg2jSQtxa7Mul5mjSn-mmHKeh_nNBT7ukCsUcWKKBRbKJviNCXw768SrI9Z6iVLfcxSv2VZVFeLKgDAu0JxSWTbshfzYpyA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Muthalif, Asan G. A.</creator><creator>Nor, Khairul A. M.</creator><creator>Wahid, Azni Nabela</creator><creator>Ali, Abdelrahman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0070-7247</orcidid><orcidid>https://orcid.org/0000-0003-0914-9701</orcidid><orcidid>https://orcid.org/0000-0002-7304-5483</orcidid></search><sort><creationdate>2021</creationdate><title>Optimization of Piezoelectric Sensor-Actuator for Plate Vibration Control Using Evolutionary Computation: Modeling, Simulation and Experimentation</title><author>Muthalif, Asan G. A. ; Nor, Khairul A. M. ; Wahid, Azni Nabela ; Ali, Abdelrahman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-63b46a4fb6fcede79ed68885a02d470900f5240339f6093b402fae40d941fd833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Active vibration control</topic><topic>Actuator position</topic><topic>Ant colony optimization</topic><topic>Attenuation</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Experimentation</topic><topic>Feedback control</topic><topic>Flexible structures</topic><topic>generic algorithm</topic><topic>Genetic algorithms</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>modeling and simulation</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>optimization of sensor-actuator location</topic><topic>Optimization techniques</topic><topic>piezoelectric</topic><topic>Piezoelectricity</topic><topic>Position sensing</topic><topic>Proportional integral derivative</topic><topic>Rigidity</topic><topic>Sensors</topic><topic>Strain</topic><topic>Vibration control</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthalif, Asan G. A.</creatorcontrib><creatorcontrib>Nor, Khairul A. M.</creatorcontrib><creatorcontrib>Wahid, Azni Nabela</creatorcontrib><creatorcontrib>Ali, Abdelrahman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthalif, Asan G. A.</au><au>Nor, Khairul A. M.</au><au>Wahid, Azni Nabela</au><au>Ali, Abdelrahman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Piezoelectric Sensor-Actuator for Plate Vibration Control Using Evolutionary Computation: Modeling, Simulation and Experimentation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>100725</spage><epage>100734</epage><pages>100725-100734</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The development of lightweight, stronger, and more flexible structures has received the utmost interest from many researchers. For this reason, piezoelectric materials, with their inherent electromechanical coupling, have been widely incorporated in the development of such structures to attenuate their vibrations. However, one of the main challenges is to find the optimal control and sensor-actuator placement. This paper presents an active vibration control for flexible structures, whereby a simply supported plate is taken as the benchmark model. A feedback controller with a collocated sensor-actuator configuration is used. Both disturbance and control signal acting on the plate is created by using piezoelectric (PZT) patches. The analytical model is derived based on the Euler-Bernoulli model. The Optimal location of the collocated sensor-actuator, as well as PID controller gains, are determined using Ant Colony Optimization (ACO) technique, then compared with the Genetic Algorithm (GA) and enumerative method (EM). Optimization in this paper is based on minimizing frequency average energy. The optimal performance value of piezoelectric patch sensor-actuator position and PID controller gains are verified experimentally. It was found that PID controller gains and collocated sensor-actuator location optimizations using ACO, GA and enumerative methods give similar results, which implies the effectiveness of ACO as an optimization technique. More than 20 % of attenuation achieved using the available hardware setup.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3096972</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0070-7247</orcidid><orcidid>https://orcid.org/0000-0003-0914-9701</orcidid><orcidid>https://orcid.org/0000-0002-7304-5483</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.100725-100734 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3096972 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Active control Active vibration control Actuator position Ant colony optimization Attenuation Evolutionary algorithms Evolutionary computation Experimentation Feedback control Flexible structures generic algorithm Genetic algorithms Mathematical model Mathematical models modeling and simulation Optimal control Optimization optimization of sensor-actuator location Optimization techniques piezoelectric Piezoelectricity Position sensing Proportional integral derivative Rigidity Sensors Strain Vibration control Vibrations |
title | Optimization of Piezoelectric Sensor-Actuator for Plate Vibration Control Using Evolutionary Computation: Modeling, Simulation and Experimentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Piezoelectric%20Sensor-Actuator%20for%20Plate%20Vibration%20Control%20Using%20Evolutionary%20Computation:%20Modeling,%20Simulation%20and%20Experimentation&rft.jtitle=IEEE%20access&rft.au=Muthalif,%20Asan%20G.%20A.&rft.date=2021&rft.volume=9&rft.spage=100725&rft.epage=100734&rft.pages=100725-100734&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3096972&rft_dat=%3Cproquest_cross%3E2553595246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553595246&rft_id=info:pmid/&rft_ieee_id=9481877&rft_doaj_id=oai_doaj_org_article_6fe2026382c64c61b8339c025581720d&rfr_iscdi=true |