Optimization of Piezoelectric Sensor-Actuator for Plate Vibration Control Using Evolutionary Computation: Modeling, Simulation and Experimentation

The development of lightweight, stronger, and more flexible structures has received the utmost interest from many researchers. For this reason, piezoelectric materials, with their inherent electromechanical coupling, have been widely incorporated in the development of such structures to attenuate th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.100725-100734
Hauptverfasser: Muthalif, Asan G. A., Nor, Khairul A. M., Wahid, Azni Nabela, Ali, Abdelrahman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100734
container_issue
container_start_page 100725
container_title IEEE access
container_volume 9
creator Muthalif, Asan G. A.
Nor, Khairul A. M.
Wahid, Azni Nabela
Ali, Abdelrahman
description The development of lightweight, stronger, and more flexible structures has received the utmost interest from many researchers. For this reason, piezoelectric materials, with their inherent electromechanical coupling, have been widely incorporated in the development of such structures to attenuate their vibrations. However, one of the main challenges is to find the optimal control and sensor-actuator placement. This paper presents an active vibration control for flexible structures, whereby a simply supported plate is taken as the benchmark model. A feedback controller with a collocated sensor-actuator configuration is used. Both disturbance and control signal acting on the plate is created by using piezoelectric (PZT) patches. The analytical model is derived based on the Euler-Bernoulli model. The Optimal location of the collocated sensor-actuator, as well as PID controller gains, are determined using Ant Colony Optimization (ACO) technique, then compared with the Genetic Algorithm (GA) and enumerative method (EM). Optimization in this paper is based on minimizing frequency average energy. The optimal performance value of piezoelectric patch sensor-actuator position and PID controller gains are verified experimentally. It was found that PID controller gains and collocated sensor-actuator location optimizations using ACO, GA and enumerative methods give similar results, which implies the effectiveness of ACO as an optimization technique. More than 20 % of attenuation achieved using the available hardware setup.
doi_str_mv 10.1109/ACCESS.2021.3096972
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3096972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9481877</ieee_id><doaj_id>oai_doaj_org_article_6fe2026382c64c61b8339c025581720d</doaj_id><sourcerecordid>2553595246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-63b46a4fb6fcede79ed68885a02d470900f5240339f6093b402fae40d941fd833</originalsourceid><addsrcrecordid>eNpNkd9qHCEUxofQQkKSJ8iNkNvO1n_jaO-WYdsGUhLYJrfi6jG4zI5TxyltHqNPHDcTQgXxcPx9xw-_qroieEUIVp_XXbfZblcUU7JiWAnV0pPqjBKhatYw8eG_-rS6nKY9LkuWVtOeVf_uxhwO4dnkEAcUPboP8ByhB5tTsGgLwxRTvbZ5Njkm5Mu-700G9Bh2aRF1ccgp9uhhCsMT2vyO_Xzsm_S3XB3GOb9iX9CP6KAvyCe0DYe5X8RmcGjzZ4QUDjAs5EX10Zt-gsu387x6-Lr52X2vb---3XTr29pyLHMt2I4Lw_1OeAsOWgVOSCkbg6njLVYY-4ZyzJjyAqsCY-oNcOwUJ95Jxs6rm2Wui2avx-KgWNbRBP3aiOlJm5SD7UELD-V7BZPUCm4F2RW5spg2jSQtxa7Mul5mjSn-mmHKeh_nNBT7ukCsUcWKKBRbKJviNCXw768SrI9Z6iVLfcxSv2VZVFeLKgDAu0JxSWTbshfzYpyA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553595246</pqid></control><display><type>article</type><title>Optimization of Piezoelectric Sensor-Actuator for Plate Vibration Control Using Evolutionary Computation: Modeling, Simulation and Experimentation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Muthalif, Asan G. A. ; Nor, Khairul A. M. ; Wahid, Azni Nabela ; Ali, Abdelrahman</creator><creatorcontrib>Muthalif, Asan G. A. ; Nor, Khairul A. M. ; Wahid, Azni Nabela ; Ali, Abdelrahman</creatorcontrib><description>The development of lightweight, stronger, and more flexible structures has received the utmost interest from many researchers. For this reason, piezoelectric materials, with their inherent electromechanical coupling, have been widely incorporated in the development of such structures to attenuate their vibrations. However, one of the main challenges is to find the optimal control and sensor-actuator placement. This paper presents an active vibration control for flexible structures, whereby a simply supported plate is taken as the benchmark model. A feedback controller with a collocated sensor-actuator configuration is used. Both disturbance and control signal acting on the plate is created by using piezoelectric (PZT) patches. The analytical model is derived based on the Euler-Bernoulli model. The Optimal location of the collocated sensor-actuator, as well as PID controller gains, are determined using Ant Colony Optimization (ACO) technique, then compared with the Genetic Algorithm (GA) and enumerative method (EM). Optimization in this paper is based on minimizing frequency average energy. The optimal performance value of piezoelectric patch sensor-actuator position and PID controller gains are verified experimentally. It was found that PID controller gains and collocated sensor-actuator location optimizations using ACO, GA and enumerative methods give similar results, which implies the effectiveness of ACO as an optimization technique. More than 20 % of attenuation achieved using the available hardware setup.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3096972</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active control ; Active vibration control ; Actuator position ; Ant colony optimization ; Attenuation ; Evolutionary algorithms ; Evolutionary computation ; Experimentation ; Feedback control ; Flexible structures ; generic algorithm ; Genetic algorithms ; Mathematical model ; Mathematical models ; modeling and simulation ; Optimal control ; Optimization ; optimization of sensor-actuator location ; Optimization techniques ; piezoelectric ; Piezoelectricity ; Position sensing ; Proportional integral derivative ; Rigidity ; Sensors ; Strain ; Vibration control ; Vibrations</subject><ispartof>IEEE access, 2021, Vol.9, p.100725-100734</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-63b46a4fb6fcede79ed68885a02d470900f5240339f6093b402fae40d941fd833</citedby><cites>FETCH-LOGICAL-c408t-63b46a4fb6fcede79ed68885a02d470900f5240339f6093b402fae40d941fd833</cites><orcidid>0000-0002-0070-7247 ; 0000-0003-0914-9701 ; 0000-0002-7304-5483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9481877$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Muthalif, Asan G. A.</creatorcontrib><creatorcontrib>Nor, Khairul A. M.</creatorcontrib><creatorcontrib>Wahid, Azni Nabela</creatorcontrib><creatorcontrib>Ali, Abdelrahman</creatorcontrib><title>Optimization of Piezoelectric Sensor-Actuator for Plate Vibration Control Using Evolutionary Computation: Modeling, Simulation and Experimentation</title><title>IEEE access</title><addtitle>Access</addtitle><description>The development of lightweight, stronger, and more flexible structures has received the utmost interest from many researchers. For this reason, piezoelectric materials, with their inherent electromechanical coupling, have been widely incorporated in the development of such structures to attenuate their vibrations. However, one of the main challenges is to find the optimal control and sensor-actuator placement. This paper presents an active vibration control for flexible structures, whereby a simply supported plate is taken as the benchmark model. A feedback controller with a collocated sensor-actuator configuration is used. Both disturbance and control signal acting on the plate is created by using piezoelectric (PZT) patches. The analytical model is derived based on the Euler-Bernoulli model. The Optimal location of the collocated sensor-actuator, as well as PID controller gains, are determined using Ant Colony Optimization (ACO) technique, then compared with the Genetic Algorithm (GA) and enumerative method (EM). Optimization in this paper is based on minimizing frequency average energy. The optimal performance value of piezoelectric patch sensor-actuator position and PID controller gains are verified experimentally. It was found that PID controller gains and collocated sensor-actuator location optimizations using ACO, GA and enumerative methods give similar results, which implies the effectiveness of ACO as an optimization technique. More than 20 % of attenuation achieved using the available hardware setup.</description><subject>Active control</subject><subject>Active vibration control</subject><subject>Actuator position</subject><subject>Ant colony optimization</subject><subject>Attenuation</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Experimentation</subject><subject>Feedback control</subject><subject>Flexible structures</subject><subject>generic algorithm</subject><subject>Genetic algorithms</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>modeling and simulation</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>optimization of sensor-actuator location</subject><subject>Optimization techniques</subject><subject>piezoelectric</subject><subject>Piezoelectricity</subject><subject>Position sensing</subject><subject>Proportional integral derivative</subject><subject>Rigidity</subject><subject>Sensors</subject><subject>Strain</subject><subject>Vibration control</subject><subject>Vibrations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd9qHCEUxofQQkKSJ8iNkNvO1n_jaO-WYdsGUhLYJrfi6jG4zI5TxyltHqNPHDcTQgXxcPx9xw-_qroieEUIVp_XXbfZblcUU7JiWAnV0pPqjBKhatYw8eG_-rS6nKY9LkuWVtOeVf_uxhwO4dnkEAcUPboP8ByhB5tTsGgLwxRTvbZ5Njkm5Mu-700G9Bh2aRF1ccgp9uhhCsMT2vyO_Xzsm_S3XB3GOb9iX9CP6KAvyCe0DYe5X8RmcGjzZ4QUDjAs5EX10Zt-gsu387x6-Lr52X2vb---3XTr29pyLHMt2I4Lw_1OeAsOWgVOSCkbg6njLVYY-4ZyzJjyAqsCY-oNcOwUJ95Jxs6rm2Wui2avx-KgWNbRBP3aiOlJm5SD7UELD-V7BZPUCm4F2RW5spg2jSQtxa7Mul5mjSn-mmHKeh_nNBT7ukCsUcWKKBRbKJviNCXw768SrI9Z6iVLfcxSv2VZVFeLKgDAu0JxSWTbshfzYpyA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Muthalif, Asan G. A.</creator><creator>Nor, Khairul A. M.</creator><creator>Wahid, Azni Nabela</creator><creator>Ali, Abdelrahman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0070-7247</orcidid><orcidid>https://orcid.org/0000-0003-0914-9701</orcidid><orcidid>https://orcid.org/0000-0002-7304-5483</orcidid></search><sort><creationdate>2021</creationdate><title>Optimization of Piezoelectric Sensor-Actuator for Plate Vibration Control Using Evolutionary Computation: Modeling, Simulation and Experimentation</title><author>Muthalif, Asan G. A. ; Nor, Khairul A. M. ; Wahid, Azni Nabela ; Ali, Abdelrahman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-63b46a4fb6fcede79ed68885a02d470900f5240339f6093b402fae40d941fd833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Active vibration control</topic><topic>Actuator position</topic><topic>Ant colony optimization</topic><topic>Attenuation</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Experimentation</topic><topic>Feedback control</topic><topic>Flexible structures</topic><topic>generic algorithm</topic><topic>Genetic algorithms</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>modeling and simulation</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>optimization of sensor-actuator location</topic><topic>Optimization techniques</topic><topic>piezoelectric</topic><topic>Piezoelectricity</topic><topic>Position sensing</topic><topic>Proportional integral derivative</topic><topic>Rigidity</topic><topic>Sensors</topic><topic>Strain</topic><topic>Vibration control</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthalif, Asan G. A.</creatorcontrib><creatorcontrib>Nor, Khairul A. M.</creatorcontrib><creatorcontrib>Wahid, Azni Nabela</creatorcontrib><creatorcontrib>Ali, Abdelrahman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthalif, Asan G. A.</au><au>Nor, Khairul A. M.</au><au>Wahid, Azni Nabela</au><au>Ali, Abdelrahman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Piezoelectric Sensor-Actuator for Plate Vibration Control Using Evolutionary Computation: Modeling, Simulation and Experimentation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>100725</spage><epage>100734</epage><pages>100725-100734</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The development of lightweight, stronger, and more flexible structures has received the utmost interest from many researchers. For this reason, piezoelectric materials, with their inherent electromechanical coupling, have been widely incorporated in the development of such structures to attenuate their vibrations. However, one of the main challenges is to find the optimal control and sensor-actuator placement. This paper presents an active vibration control for flexible structures, whereby a simply supported plate is taken as the benchmark model. A feedback controller with a collocated sensor-actuator configuration is used. Both disturbance and control signal acting on the plate is created by using piezoelectric (PZT) patches. The analytical model is derived based on the Euler-Bernoulli model. The Optimal location of the collocated sensor-actuator, as well as PID controller gains, are determined using Ant Colony Optimization (ACO) technique, then compared with the Genetic Algorithm (GA) and enumerative method (EM). Optimization in this paper is based on minimizing frequency average energy. The optimal performance value of piezoelectric patch sensor-actuator position and PID controller gains are verified experimentally. It was found that PID controller gains and collocated sensor-actuator location optimizations using ACO, GA and enumerative methods give similar results, which implies the effectiveness of ACO as an optimization technique. More than 20 % of attenuation achieved using the available hardware setup.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3096972</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0070-7247</orcidid><orcidid>https://orcid.org/0000-0003-0914-9701</orcidid><orcidid>https://orcid.org/0000-0002-7304-5483</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.100725-100734
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3096972
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Active control
Active vibration control
Actuator position
Ant colony optimization
Attenuation
Evolutionary algorithms
Evolutionary computation
Experimentation
Feedback control
Flexible structures
generic algorithm
Genetic algorithms
Mathematical model
Mathematical models
modeling and simulation
Optimal control
Optimization
optimization of sensor-actuator location
Optimization techniques
piezoelectric
Piezoelectricity
Position sensing
Proportional integral derivative
Rigidity
Sensors
Strain
Vibration control
Vibrations
title Optimization of Piezoelectric Sensor-Actuator for Plate Vibration Control Using Evolutionary Computation: Modeling, Simulation and Experimentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Piezoelectric%20Sensor-Actuator%20for%20Plate%20Vibration%20Control%20Using%20Evolutionary%20Computation:%20Modeling,%20Simulation%20and%20Experimentation&rft.jtitle=IEEE%20access&rft.au=Muthalif,%20Asan%20G.%20A.&rft.date=2021&rft.volume=9&rft.spage=100725&rft.epage=100734&rft.pages=100725-100734&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3096972&rft_dat=%3Cproquest_cross%3E2553595246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553595246&rft_id=info:pmid/&rft_ieee_id=9481877&rft_doaj_id=oai_doaj_org_article_6fe2026382c64c61b8339c025581720d&rfr_iscdi=true