Sequential Feature Filtering Classifier
The Ensemble and mixture of expertise method is the most intuitive and simple way to improve performance in the field of recognition using convolutional neural networks (CNNs). However, Ensemble is difficult to apply in real-time operation applications because the amount of computational overhead an...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.97068-97078 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97078 |
---|---|
container_issue | |
container_start_page | 97068 |
container_title | IEEE access |
container_volume | 9 |
creator | Seo, Minseok Seo Lee, Jaemin Park, Jongchan Kim, Daehan Choi, Dong-Geol |
description | The Ensemble and mixture of expertise method is the most intuitive and simple way to improve performance in the field of recognition using convolutional neural networks (CNNs). However, Ensemble is difficult to apply in real-time operation applications because the amount of computational overhead and parameters increase in proportion to the number of models. In another, a mixture of expertise that extracts various expertise and combines it is cumbersome to apply because it requires a large change in the network. In this study, we propose Sequential Feature Filtering Classifier (FFC), a simple but effective classifier for CNNs. Using sequential LayerNorm and ReLU, FFC zeroes out low-activation units and preserves high-activation units. The sequential feature filtering process generates multiple features, which are transmitted to a shared classifier, yielding multiple outputs (multiple expertise). FFC can be applied to any CNN with a classifier and it significantly improves the performance with negligible overhead. In this study, the efficacy of FFC is validated extensively on various tasks-ImageNet-1K classification, MS COCO detection, Cityscapes segmentation, and HMDB51 action recognition. Moreover, it is empirically established that FFC can further improve performances using additional techniques, including attention modules. Code is available at https://github.com/seominseok0429/Sequential-Feature-Filtering-Classifier . |
doi_str_mv | 10.1109/ACCESS.2021.3090439 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3090439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9459741</ieee_id><doaj_id>oai_doaj_org_article_955a13e4ab134c95a73936536341628d</doaj_id><sourcerecordid>2551364809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7465e567cedc3ff5af8778024a60002f5862a8b555c6aada3cc434a2be2682143</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqf0FvRQ8eNqa702OZWm1UPBQPYdpdrakrN2abA_-e1O3iHOZ4THvvZlHyJTROWPUPi-qarndzjnlbC6opVLYGzLiTNtCKKFv_833ZJLSgeYyGVLliDxt8euMxz5AO1sh9OeIs1Voe4zhuJ9VLaQUmoDxgdw10CacXPuYfKyW79VrsXl7WVeLTeElNX1RSq1Q6dJj7UXTKGhMWRrKJehsyhtlNAezU0p5DVCD8F4KCXyHXBvOpBiT9aBbd3Bwpxg-IX67DoL7Bbq4dxD74Ft0VilgAiXsmJDeKiiFFTp_KSTT3NRZ63HQOsUuP5l6d-jO8ZjPd1wpJrQ01OYtMWz52KUUsflzZdRdAnZDwO4SsLsGnFnTgRUQ8Y9hpbKlZOIHKFpzng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551364809</pqid></control><display><type>article</type><title>Sequential Feature Filtering Classifier</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Seo, Minseok Seo ; Lee, Jaemin ; Park, Jongchan ; Kim, Daehan ; Choi, Dong-Geol</creator><creatorcontrib>Seo, Minseok Seo ; Lee, Jaemin ; Park, Jongchan ; Kim, Daehan ; Choi, Dong-Geol</creatorcontrib><description>The Ensemble and mixture of expertise method is the most intuitive and simple way to improve performance in the field of recognition using convolutional neural networks (CNNs). However, Ensemble is difficult to apply in real-time operation applications because the amount of computational overhead and parameters increase in proportion to the number of models. In another, a mixture of expertise that extracts various expertise and combines it is cumbersome to apply because it requires a large change in the network. In this study, we propose Sequential Feature Filtering Classifier (FFC), a simple but effective classifier for CNNs. Using sequential LayerNorm and ReLU, FFC zeroes out low-activation units and preserves high-activation units. The sequential feature filtering process generates multiple features, which are transmitted to a shared classifier, yielding multiple outputs (multiple expertise). FFC can be applied to any CNN with a classifier and it significantly improves the performance with negligible overhead. In this study, the efficacy of FFC is validated extensively on various tasks-ImageNet-1K classification, MS COCO detection, Cityscapes segmentation, and HMDB51 action recognition. Moreover, it is empirically established that FFC can further improve performances using additional techniques, including attention modules. Code is available at https://github.com/seominseok0429/Sequential-Feature-Filtering-Classifier .</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3090439</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; attention module ; bag of trick ; Classifiers ; Computer architecture ; Feature extraction ; feature filtering ; Filtration ; Image classification ; Image segmentation ; Logic gates ; Object detection ; Performance enhancement ; Real time operation ; Recognition ; Task analysis ; Training</subject><ispartof>IEEE access, 2021, Vol.9, p.97068-97078</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7465e567cedc3ff5af8778024a60002f5862a8b555c6aada3cc434a2be2682143</citedby><cites>FETCH-LOGICAL-c408t-7465e567cedc3ff5af8778024a60002f5862a8b555c6aada3cc434a2be2682143</cites><orcidid>0000-0001-9808-6823 ; 0000-0002-3345-5306 ; 0000-0002-5940-120X ; 0000-0001-6434-9381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9459741$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Seo, Minseok Seo</creatorcontrib><creatorcontrib>Lee, Jaemin</creatorcontrib><creatorcontrib>Park, Jongchan</creatorcontrib><creatorcontrib>Kim, Daehan</creatorcontrib><creatorcontrib>Choi, Dong-Geol</creatorcontrib><title>Sequential Feature Filtering Classifier</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Ensemble and mixture of expertise method is the most intuitive and simple way to improve performance in the field of recognition using convolutional neural networks (CNNs). However, Ensemble is difficult to apply in real-time operation applications because the amount of computational overhead and parameters increase in proportion to the number of models. In another, a mixture of expertise that extracts various expertise and combines it is cumbersome to apply because it requires a large change in the network. In this study, we propose Sequential Feature Filtering Classifier (FFC), a simple but effective classifier for CNNs. Using sequential LayerNorm and ReLU, FFC zeroes out low-activation units and preserves high-activation units. The sequential feature filtering process generates multiple features, which are transmitted to a shared classifier, yielding multiple outputs (multiple expertise). FFC can be applied to any CNN with a classifier and it significantly improves the performance with negligible overhead. In this study, the efficacy of FFC is validated extensively on various tasks-ImageNet-1K classification, MS COCO detection, Cityscapes segmentation, and HMDB51 action recognition. Moreover, it is empirically established that FFC can further improve performances using additional techniques, including attention modules. Code is available at https://github.com/seominseok0429/Sequential-Feature-Filtering-Classifier .</description><subject>Artificial neural networks</subject><subject>attention module</subject><subject>bag of trick</subject><subject>Classifiers</subject><subject>Computer architecture</subject><subject>Feature extraction</subject><subject>feature filtering</subject><subject>Filtration</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Logic gates</subject><subject>Object detection</subject><subject>Performance enhancement</subject><subject>Real time operation</subject><subject>Recognition</subject><subject>Task analysis</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqf0FvRQ8eNqa702OZWm1UPBQPYdpdrakrN2abA_-e1O3iHOZ4THvvZlHyJTROWPUPi-qarndzjnlbC6opVLYGzLiTNtCKKFv_833ZJLSgeYyGVLliDxt8euMxz5AO1sh9OeIs1Voe4zhuJ9VLaQUmoDxgdw10CacXPuYfKyW79VrsXl7WVeLTeElNX1RSq1Q6dJj7UXTKGhMWRrKJehsyhtlNAezU0p5DVCD8F4KCXyHXBvOpBiT9aBbd3Bwpxg-IX67DoL7Bbq4dxD74Ft0VilgAiXsmJDeKiiFFTp_KSTT3NRZ63HQOsUuP5l6d-jO8ZjPd1wpJrQ01OYtMWz52KUUsflzZdRdAnZDwO4SsLsGnFnTgRUQ8Y9hpbKlZOIHKFpzng</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Seo, Minseok Seo</creator><creator>Lee, Jaemin</creator><creator>Park, Jongchan</creator><creator>Kim, Daehan</creator><creator>Choi, Dong-Geol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9808-6823</orcidid><orcidid>https://orcid.org/0000-0002-3345-5306</orcidid><orcidid>https://orcid.org/0000-0002-5940-120X</orcidid><orcidid>https://orcid.org/0000-0001-6434-9381</orcidid></search><sort><creationdate>2021</creationdate><title>Sequential Feature Filtering Classifier</title><author>Seo, Minseok Seo ; Lee, Jaemin ; Park, Jongchan ; Kim, Daehan ; Choi, Dong-Geol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7465e567cedc3ff5af8778024a60002f5862a8b555c6aada3cc434a2be2682143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>attention module</topic><topic>bag of trick</topic><topic>Classifiers</topic><topic>Computer architecture</topic><topic>Feature extraction</topic><topic>feature filtering</topic><topic>Filtration</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Logic gates</topic><topic>Object detection</topic><topic>Performance enhancement</topic><topic>Real time operation</topic><topic>Recognition</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Minseok Seo</creatorcontrib><creatorcontrib>Lee, Jaemin</creatorcontrib><creatorcontrib>Park, Jongchan</creatorcontrib><creatorcontrib>Kim, Daehan</creatorcontrib><creatorcontrib>Choi, Dong-Geol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Minseok Seo</au><au>Lee, Jaemin</au><au>Park, Jongchan</au><au>Kim, Daehan</au><au>Choi, Dong-Geol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Feature Filtering Classifier</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>97068</spage><epage>97078</epage><pages>97068-97078</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Ensemble and mixture of expertise method is the most intuitive and simple way to improve performance in the field of recognition using convolutional neural networks (CNNs). However, Ensemble is difficult to apply in real-time operation applications because the amount of computational overhead and parameters increase in proportion to the number of models. In another, a mixture of expertise that extracts various expertise and combines it is cumbersome to apply because it requires a large change in the network. In this study, we propose Sequential Feature Filtering Classifier (FFC), a simple but effective classifier for CNNs. Using sequential LayerNorm and ReLU, FFC zeroes out low-activation units and preserves high-activation units. The sequential feature filtering process generates multiple features, which are transmitted to a shared classifier, yielding multiple outputs (multiple expertise). FFC can be applied to any CNN with a classifier and it significantly improves the performance with negligible overhead. In this study, the efficacy of FFC is validated extensively on various tasks-ImageNet-1K classification, MS COCO detection, Cityscapes segmentation, and HMDB51 action recognition. Moreover, it is empirically established that FFC can further improve performances using additional techniques, including attention modules. Code is available at https://github.com/seominseok0429/Sequential-Feature-Filtering-Classifier .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3090439</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9808-6823</orcidid><orcidid>https://orcid.org/0000-0002-3345-5306</orcidid><orcidid>https://orcid.org/0000-0002-5940-120X</orcidid><orcidid>https://orcid.org/0000-0001-6434-9381</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.97068-97078 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3090439 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks attention module bag of trick Classifiers Computer architecture Feature extraction feature filtering Filtration Image classification Image segmentation Logic gates Object detection Performance enhancement Real time operation Recognition Task analysis Training |
title | Sequential Feature Filtering Classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Feature%20Filtering%20Classifier&rft.jtitle=IEEE%20access&rft.au=Seo,%20Minseok%20Seo&rft.date=2021&rft.volume=9&rft.spage=97068&rft.epage=97078&rft.pages=97068-97078&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3090439&rft_dat=%3Cproquest_cross%3E2551364809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551364809&rft_id=info:pmid/&rft_ieee_id=9459741&rft_doaj_id=oai_doaj_org_article_955a13e4ab134c95a73936536341628d&rfr_iscdi=true |