Sequential Feature Filtering Classifier

The Ensemble and mixture of expertise method is the most intuitive and simple way to improve performance in the field of recognition using convolutional neural networks (CNNs). However, Ensemble is difficult to apply in real-time operation applications because the amount of computational overhead an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.97068-97078
Hauptverfasser: Seo, Minseok Seo, Lee, Jaemin, Park, Jongchan, Kim, Daehan, Choi, Dong-Geol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97078
container_issue
container_start_page 97068
container_title IEEE access
container_volume 9
creator Seo, Minseok Seo
Lee, Jaemin
Park, Jongchan
Kim, Daehan
Choi, Dong-Geol
description The Ensemble and mixture of expertise method is the most intuitive and simple way to improve performance in the field of recognition using convolutional neural networks (CNNs). However, Ensemble is difficult to apply in real-time operation applications because the amount of computational overhead and parameters increase in proportion to the number of models. In another, a mixture of expertise that extracts various expertise and combines it is cumbersome to apply because it requires a large change in the network. In this study, we propose Sequential Feature Filtering Classifier (FFC), a simple but effective classifier for CNNs. Using sequential LayerNorm and ReLU, FFC zeroes out low-activation units and preserves high-activation units. The sequential feature filtering process generates multiple features, which are transmitted to a shared classifier, yielding multiple outputs (multiple expertise). FFC can be applied to any CNN with a classifier and it significantly improves the performance with negligible overhead. In this study, the efficacy of FFC is validated extensively on various tasks-ImageNet-1K classification, MS COCO detection, Cityscapes segmentation, and HMDB51 action recognition. Moreover, it is empirically established that FFC can further improve performances using additional techniques, including attention modules. Code is available at https://github.com/seominseok0429/Sequential-Feature-Filtering-Classifier .
doi_str_mv 10.1109/ACCESS.2021.3090439
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3090439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9459741</ieee_id><doaj_id>oai_doaj_org_article_955a13e4ab134c95a73936536341628d</doaj_id><sourcerecordid>2551364809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7465e567cedc3ff5af8778024a60002f5862a8b555c6aada3cc434a2be2682143</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqf0FvRQ8eNqa702OZWm1UPBQPYdpdrakrN2abA_-e1O3iHOZ4THvvZlHyJTROWPUPi-qarndzjnlbC6opVLYGzLiTNtCKKFv_833ZJLSgeYyGVLliDxt8euMxz5AO1sh9OeIs1Voe4zhuJ9VLaQUmoDxgdw10CacXPuYfKyW79VrsXl7WVeLTeElNX1RSq1Q6dJj7UXTKGhMWRrKJehsyhtlNAezU0p5DVCD8F4KCXyHXBvOpBiT9aBbd3Bwpxg-IX67DoL7Bbq4dxD74Ft0VilgAiXsmJDeKiiFFTp_KSTT3NRZ63HQOsUuP5l6d-jO8ZjPd1wpJrQ01OYtMWz52KUUsflzZdRdAnZDwO4SsLsGnFnTgRUQ8Y9hpbKlZOIHKFpzng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551364809</pqid></control><display><type>article</type><title>Sequential Feature Filtering Classifier</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Seo, Minseok Seo ; Lee, Jaemin ; Park, Jongchan ; Kim, Daehan ; Choi, Dong-Geol</creator><creatorcontrib>Seo, Minseok Seo ; Lee, Jaemin ; Park, Jongchan ; Kim, Daehan ; Choi, Dong-Geol</creatorcontrib><description>The Ensemble and mixture of expertise method is the most intuitive and simple way to improve performance in the field of recognition using convolutional neural networks (CNNs). However, Ensemble is difficult to apply in real-time operation applications because the amount of computational overhead and parameters increase in proportion to the number of models. In another, a mixture of expertise that extracts various expertise and combines it is cumbersome to apply because it requires a large change in the network. In this study, we propose Sequential Feature Filtering Classifier (FFC), a simple but effective classifier for CNNs. Using sequential LayerNorm and ReLU, FFC zeroes out low-activation units and preserves high-activation units. The sequential feature filtering process generates multiple features, which are transmitted to a shared classifier, yielding multiple outputs (multiple expertise). FFC can be applied to any CNN with a classifier and it significantly improves the performance with negligible overhead. In this study, the efficacy of FFC is validated extensively on various tasks-ImageNet-1K classification, MS COCO detection, Cityscapes segmentation, and HMDB51 action recognition. Moreover, it is empirically established that FFC can further improve performances using additional techniques, including attention modules. Code is available at https://github.com/seominseok0429/Sequential-Feature-Filtering-Classifier .</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3090439</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; attention module ; bag of trick ; Classifiers ; Computer architecture ; Feature extraction ; feature filtering ; Filtration ; Image classification ; Image segmentation ; Logic gates ; Object detection ; Performance enhancement ; Real time operation ; Recognition ; Task analysis ; Training</subject><ispartof>IEEE access, 2021, Vol.9, p.97068-97078</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7465e567cedc3ff5af8778024a60002f5862a8b555c6aada3cc434a2be2682143</citedby><cites>FETCH-LOGICAL-c408t-7465e567cedc3ff5af8778024a60002f5862a8b555c6aada3cc434a2be2682143</cites><orcidid>0000-0001-9808-6823 ; 0000-0002-3345-5306 ; 0000-0002-5940-120X ; 0000-0001-6434-9381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9459741$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Seo, Minseok Seo</creatorcontrib><creatorcontrib>Lee, Jaemin</creatorcontrib><creatorcontrib>Park, Jongchan</creatorcontrib><creatorcontrib>Kim, Daehan</creatorcontrib><creatorcontrib>Choi, Dong-Geol</creatorcontrib><title>Sequential Feature Filtering Classifier</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Ensemble and mixture of expertise method is the most intuitive and simple way to improve performance in the field of recognition using convolutional neural networks (CNNs). However, Ensemble is difficult to apply in real-time operation applications because the amount of computational overhead and parameters increase in proportion to the number of models. In another, a mixture of expertise that extracts various expertise and combines it is cumbersome to apply because it requires a large change in the network. In this study, we propose Sequential Feature Filtering Classifier (FFC), a simple but effective classifier for CNNs. Using sequential LayerNorm and ReLU, FFC zeroes out low-activation units and preserves high-activation units. The sequential feature filtering process generates multiple features, which are transmitted to a shared classifier, yielding multiple outputs (multiple expertise). FFC can be applied to any CNN with a classifier and it significantly improves the performance with negligible overhead. In this study, the efficacy of FFC is validated extensively on various tasks-ImageNet-1K classification, MS COCO detection, Cityscapes segmentation, and HMDB51 action recognition. Moreover, it is empirically established that FFC can further improve performances using additional techniques, including attention modules. Code is available at https://github.com/seominseok0429/Sequential-Feature-Filtering-Classifier .</description><subject>Artificial neural networks</subject><subject>attention module</subject><subject>bag of trick</subject><subject>Classifiers</subject><subject>Computer architecture</subject><subject>Feature extraction</subject><subject>feature filtering</subject><subject>Filtration</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Logic gates</subject><subject>Object detection</subject><subject>Performance enhancement</subject><subject>Real time operation</subject><subject>Recognition</subject><subject>Task analysis</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqf0FvRQ8eNqa702OZWm1UPBQPYdpdrakrN2abA_-e1O3iHOZ4THvvZlHyJTROWPUPi-qarndzjnlbC6opVLYGzLiTNtCKKFv_833ZJLSgeYyGVLliDxt8euMxz5AO1sh9OeIs1Voe4zhuJ9VLaQUmoDxgdw10CacXPuYfKyW79VrsXl7WVeLTeElNX1RSq1Q6dJj7UXTKGhMWRrKJehsyhtlNAezU0p5DVCD8F4KCXyHXBvOpBiT9aBbd3Bwpxg-IX67DoL7Bbq4dxD74Ft0VilgAiXsmJDeKiiFFTp_KSTT3NRZ63HQOsUuP5l6d-jO8ZjPd1wpJrQ01OYtMWz52KUUsflzZdRdAnZDwO4SsLsGnFnTgRUQ8Y9hpbKlZOIHKFpzng</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Seo, Minseok Seo</creator><creator>Lee, Jaemin</creator><creator>Park, Jongchan</creator><creator>Kim, Daehan</creator><creator>Choi, Dong-Geol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9808-6823</orcidid><orcidid>https://orcid.org/0000-0002-3345-5306</orcidid><orcidid>https://orcid.org/0000-0002-5940-120X</orcidid><orcidid>https://orcid.org/0000-0001-6434-9381</orcidid></search><sort><creationdate>2021</creationdate><title>Sequential Feature Filtering Classifier</title><author>Seo, Minseok Seo ; Lee, Jaemin ; Park, Jongchan ; Kim, Daehan ; Choi, Dong-Geol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7465e567cedc3ff5af8778024a60002f5862a8b555c6aada3cc434a2be2682143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>attention module</topic><topic>bag of trick</topic><topic>Classifiers</topic><topic>Computer architecture</topic><topic>Feature extraction</topic><topic>feature filtering</topic><topic>Filtration</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Logic gates</topic><topic>Object detection</topic><topic>Performance enhancement</topic><topic>Real time operation</topic><topic>Recognition</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Minseok Seo</creatorcontrib><creatorcontrib>Lee, Jaemin</creatorcontrib><creatorcontrib>Park, Jongchan</creatorcontrib><creatorcontrib>Kim, Daehan</creatorcontrib><creatorcontrib>Choi, Dong-Geol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Minseok Seo</au><au>Lee, Jaemin</au><au>Park, Jongchan</au><au>Kim, Daehan</au><au>Choi, Dong-Geol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Feature Filtering Classifier</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>97068</spage><epage>97078</epage><pages>97068-97078</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Ensemble and mixture of expertise method is the most intuitive and simple way to improve performance in the field of recognition using convolutional neural networks (CNNs). However, Ensemble is difficult to apply in real-time operation applications because the amount of computational overhead and parameters increase in proportion to the number of models. In another, a mixture of expertise that extracts various expertise and combines it is cumbersome to apply because it requires a large change in the network. In this study, we propose Sequential Feature Filtering Classifier (FFC), a simple but effective classifier for CNNs. Using sequential LayerNorm and ReLU, FFC zeroes out low-activation units and preserves high-activation units. The sequential feature filtering process generates multiple features, which are transmitted to a shared classifier, yielding multiple outputs (multiple expertise). FFC can be applied to any CNN with a classifier and it significantly improves the performance with negligible overhead. In this study, the efficacy of FFC is validated extensively on various tasks-ImageNet-1K classification, MS COCO detection, Cityscapes segmentation, and HMDB51 action recognition. Moreover, it is empirically established that FFC can further improve performances using additional techniques, including attention modules. Code is available at https://github.com/seominseok0429/Sequential-Feature-Filtering-Classifier .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3090439</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9808-6823</orcidid><orcidid>https://orcid.org/0000-0002-3345-5306</orcidid><orcidid>https://orcid.org/0000-0002-5940-120X</orcidid><orcidid>https://orcid.org/0000-0001-6434-9381</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.97068-97078
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3090439
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
attention module
bag of trick
Classifiers
Computer architecture
Feature extraction
feature filtering
Filtration
Image classification
Image segmentation
Logic gates
Object detection
Performance enhancement
Real time operation
Recognition
Task analysis
Training
title Sequential Feature Filtering Classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Feature%20Filtering%20Classifier&rft.jtitle=IEEE%20access&rft.au=Seo,%20Minseok%20Seo&rft.date=2021&rft.volume=9&rft.spage=97068&rft.epage=97078&rft.pages=97068-97078&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3090439&rft_dat=%3Cproquest_cross%3E2551364809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551364809&rft_id=info:pmid/&rft_ieee_id=9459741&rft_doaj_id=oai_doaj_org_article_955a13e4ab134c95a73936536341628d&rfr_iscdi=true