Accelerated K-Means Algorithms for Low-Dimensional Data on Parallel Shared-Memory Systems
This paper considers the problem of exact accelerated algorithms for the K-means clustering of low-dimensional data on modern multi-core systems. A version of the filtering algorithm parallelized using the OpenMP (Open Multi-Processing) standard is proposed. The algorithm employs a kd-tree structure...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.74286-74301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74301 |
---|---|
container_issue | |
container_start_page | 74286 |
container_title | IEEE access |
container_volume | 9 |
creator | Kwedlo, Wojciech Lubowicz, Michal |
description | This paper considers the problem of exact accelerated algorithms for the K-means clustering of low-dimensional data on modern multi-core systems. A version of the filtering algorithm parallelized using the OpenMP (Open Multi-Processing) standard is proposed. The algorithm employs a kd-tree structure to skip some unnecessary calculations between cluster centroids and feature vectors. In our approach, both the kd-tree construction and the iterations of the K-means are parallelized using the OpenMP tasking mechanism. A new task is created for a recursive call performed during kd-tree construction and traversal. The tasks are executed in parallel by the cores of a shared-memory system. In computational experiments, we evaluated the parallel efficiency of our approach and compared its performance to the parallel Lloyd's method, a GPU (Graphics Processing Unit) formulation of the K-means algorithm, and two parallel triangle inequality-based algorithms intended for low-dimensional data. The evaluation was performed on six synthetic datasets from two distributions and seven real-life datasets. The experiments, executed on a 24-core system, indicated that our version of the filtering algorithm had satisfactory or high parallel efficiency. Its runtime was much shorter than those of competing algorithms. However, the advantage of the parallel filtering algorithm decreased rapidly as the dimension of data increased. |
doi_str_mv | 10.1109/ACCESS.2021.3080821 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3080821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9432858</ieee_id><doaj_id>oai_doaj_org_article_9664407770d44f1093aa18ff47138e42</doaj_id><sourcerecordid>2532301463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5c7ec95d25e46c2cd87c8ff3f89ae0c880d1dafff80d4e585fb34d0f44d101fd3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX9BLwHPW_O5mz2W-lWsKFQPnsKYTHTLbqPJivTfm7oizmUew3tvmHlFMWF0yhhtzmfz-eVqNeWUs6mgmmrO9oojzqqmFEpU-__wYXGa0prm0nmk6qPieWYtdhhhQEduyzuETSKz7jXEdnjrE_EhkmX4Ki_aHjepDRvoyAUMQMKGPECErsOOrN4gosviPsQtWW3TgH06KQ48dAlPf_tx8XR1-Ti_KZf314v5bFlaSfVQKlujbZTjCmVluXW6ttp74XUDSK3W1DEH3vsMJCqt_IuQjnopHaPMO3FcLEZfF2Bt3mPbQ9yaAK35GYT4aiAOre3QNFUlJa3rOltJn38nAFheJmsmNEqevc5Gr_cYPj4xDWYdPmO-ORmuBBeUyUpklhhZNoaUIvq_rYyaXSRmjMTsIjG_kWTVZFS1iPinaKTgWmnxDXf4hrs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532301463</pqid></control><display><type>article</type><title>Accelerated K-Means Algorithms for Low-Dimensional Data on Parallel Shared-Memory Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kwedlo, Wojciech ; Lubowicz, Michal</creator><creatorcontrib>Kwedlo, Wojciech ; Lubowicz, Michal</creatorcontrib><description>This paper considers the problem of exact accelerated algorithms for the K-means clustering of low-dimensional data on modern multi-core systems. A version of the filtering algorithm parallelized using the OpenMP (Open Multi-Processing) standard is proposed. The algorithm employs a kd-tree structure to skip some unnecessary calculations between cluster centroids and feature vectors. In our approach, both the kd-tree construction and the iterations of the K-means are parallelized using the OpenMP tasking mechanism. A new task is created for a recursive call performed during kd-tree construction and traversal. The tasks are executed in parallel by the cores of a shared-memory system. In computational experiments, we evaluated the parallel efficiency of our approach and compared its performance to the parallel Lloyd's method, a GPU (Graphics Processing Unit) formulation of the K-means algorithm, and two parallel triangle inequality-based algorithms intended for low-dimensional data. The evaluation was performed on six synthetic datasets from two distributions and seven real-life datasets. The experiments, executed on a 24-core system, indicated that our version of the filtering algorithm had satisfactory or high parallel efficiency. Its runtime was much shorter than those of competing algorithms. However, the advantage of the parallel filtering algorithm decreased rapidly as the dimension of data increased.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3080821</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means clustering ; Acceleration of <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means ; Algorithms ; Approximation algorithms ; Centroids ; Cluster analysis ; Clustering ; Clustering algorithms ; Datasets ; Filtration ; Graphics processing units ; Heuristic algorithms ; kd-trees ; OpenMP tasks ; Parallel processing ; parallelization ; Partitioning algorithms ; Signal processing algorithms ; Task analysis ; Vector quantization</subject><ispartof>IEEE access, 2021, Vol.9, p.74286-74301</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5c7ec95d25e46c2cd87c8ff3f89ae0c880d1dafff80d4e585fb34d0f44d101fd3</citedby><cites>FETCH-LOGICAL-c408t-5c7ec95d25e46c2cd87c8ff3f89ae0c880d1dafff80d4e585fb34d0f44d101fd3</cites><orcidid>0000-0002-5040-2302 ; 0000-0002-8907-5505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9432858$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kwedlo, Wojciech</creatorcontrib><creatorcontrib>Lubowicz, Michal</creatorcontrib><title>Accelerated K-Means Algorithms for Low-Dimensional Data on Parallel Shared-Memory Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper considers the problem of exact accelerated algorithms for the K-means clustering of low-dimensional data on modern multi-core systems. A version of the filtering algorithm parallelized using the OpenMP (Open Multi-Processing) standard is proposed. The algorithm employs a kd-tree structure to skip some unnecessary calculations between cluster centroids and feature vectors. In our approach, both the kd-tree construction and the iterations of the K-means are parallelized using the OpenMP tasking mechanism. A new task is created for a recursive call performed during kd-tree construction and traversal. The tasks are executed in parallel by the cores of a shared-memory system. In computational experiments, we evaluated the parallel efficiency of our approach and compared its performance to the parallel Lloyd's method, a GPU (Graphics Processing Unit) formulation of the K-means algorithm, and two parallel triangle inequality-based algorithms intended for low-dimensional data. The evaluation was performed on six synthetic datasets from two distributions and seven real-life datasets. The experiments, executed on a 24-core system, indicated that our version of the filtering algorithm had satisfactory or high parallel efficiency. Its runtime was much shorter than those of competing algorithms. However, the advantage of the parallel filtering algorithm decreased rapidly as the dimension of data increased.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means clustering</subject><subject>Acceleration of <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Centroids</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Datasets</subject><subject>Filtration</subject><subject>Graphics processing units</subject><subject>Heuristic algorithms</subject><subject>kd-trees</subject><subject>OpenMP tasks</subject><subject>Parallel processing</subject><subject>parallelization</subject><subject>Partitioning algorithms</subject><subject>Signal processing algorithms</subject><subject>Task analysis</subject><subject>Vector quantization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX9BLwHPW_O5mz2W-lWsKFQPnsKYTHTLbqPJivTfm7oizmUew3tvmHlFMWF0yhhtzmfz-eVqNeWUs6mgmmrO9oojzqqmFEpU-__wYXGa0prm0nmk6qPieWYtdhhhQEduyzuETSKz7jXEdnjrE_EhkmX4Ki_aHjepDRvoyAUMQMKGPECErsOOrN4gosviPsQtWW3TgH06KQ48dAlPf_tx8XR1-Ti_KZf314v5bFlaSfVQKlujbZTjCmVluXW6ttp74XUDSK3W1DEH3vsMJCqt_IuQjnopHaPMO3FcLEZfF2Bt3mPbQ9yaAK35GYT4aiAOre3QNFUlJa3rOltJn38nAFheJmsmNEqevc5Gr_cYPj4xDWYdPmO-ORmuBBeUyUpklhhZNoaUIvq_rYyaXSRmjMTsIjG_kWTVZFS1iPinaKTgWmnxDXf4hrs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kwedlo, Wojciech</creator><creator>Lubowicz, Michal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5040-2302</orcidid><orcidid>https://orcid.org/0000-0002-8907-5505</orcidid></search><sort><creationdate>2021</creationdate><title>Accelerated K-Means Algorithms for Low-Dimensional Data on Parallel Shared-Memory Systems</title><author>Kwedlo, Wojciech ; Lubowicz, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5c7ec95d25e46c2cd87c8ff3f89ae0c880d1dafff80d4e585fb34d0f44d101fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means clustering</topic><topic>Acceleration of <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Centroids</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Datasets</topic><topic>Filtration</topic><topic>Graphics processing units</topic><topic>Heuristic algorithms</topic><topic>kd-trees</topic><topic>OpenMP tasks</topic><topic>Parallel processing</topic><topic>parallelization</topic><topic>Partitioning algorithms</topic><topic>Signal processing algorithms</topic><topic>Task analysis</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwedlo, Wojciech</creatorcontrib><creatorcontrib>Lubowicz, Michal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwedlo, Wojciech</au><au>Lubowicz, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated K-Means Algorithms for Low-Dimensional Data on Parallel Shared-Memory Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>74286</spage><epage>74301</epage><pages>74286-74301</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper considers the problem of exact accelerated algorithms for the K-means clustering of low-dimensional data on modern multi-core systems. A version of the filtering algorithm parallelized using the OpenMP (Open Multi-Processing) standard is proposed. The algorithm employs a kd-tree structure to skip some unnecessary calculations between cluster centroids and feature vectors. In our approach, both the kd-tree construction and the iterations of the K-means are parallelized using the OpenMP tasking mechanism. A new task is created for a recursive call performed during kd-tree construction and traversal. The tasks are executed in parallel by the cores of a shared-memory system. In computational experiments, we evaluated the parallel efficiency of our approach and compared its performance to the parallel Lloyd's method, a GPU (Graphics Processing Unit) formulation of the K-means algorithm, and two parallel triangle inequality-based algorithms intended for low-dimensional data. The evaluation was performed on six synthetic datasets from two distributions and seven real-life datasets. The experiments, executed on a 24-core system, indicated that our version of the filtering algorithm had satisfactory or high parallel efficiency. Its runtime was much shorter than those of competing algorithms. However, the advantage of the parallel filtering algorithm decreased rapidly as the dimension of data increased.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3080821</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5040-2302</orcidid><orcidid>https://orcid.org/0000-0002-8907-5505</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.74286-74301 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3080821 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means clustering Acceleration of <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means Algorithms Approximation algorithms Centroids Cluster analysis Clustering Clustering algorithms Datasets Filtration Graphics processing units Heuristic algorithms kd-trees OpenMP tasks Parallel processing parallelization Partitioning algorithms Signal processing algorithms Task analysis Vector quantization |
title | Accelerated K-Means Algorithms for Low-Dimensional Data on Parallel Shared-Memory Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20K-Means%20Algorithms%20for%20Low-Dimensional%20Data%20on%20Parallel%20Shared-Memory%20Systems&rft.jtitle=IEEE%20access&rft.au=Kwedlo,%20Wojciech&rft.date=2021&rft.volume=9&rft.spage=74286&rft.epage=74301&rft.pages=74286-74301&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3080821&rft_dat=%3Cproquest_cross%3E2532301463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532301463&rft_id=info:pmid/&rft_ieee_id=9432858&rft_doaj_id=oai_doaj_org_article_9664407770d44f1093aa18ff47138e42&rfr_iscdi=true |