Accelerated K-Means Algorithms for Low-Dimensional Data on Parallel Shared-Memory Systems

This paper considers the problem of exact accelerated algorithms for the K-means clustering of low-dimensional data on modern multi-core systems. A version of the filtering algorithm parallelized using the OpenMP (Open Multi-Processing) standard is proposed. The algorithm employs a kd-tree structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.74286-74301
Hauptverfasser: Kwedlo, Wojciech, Lubowicz, Michal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74301
container_issue
container_start_page 74286
container_title IEEE access
container_volume 9
creator Kwedlo, Wojciech
Lubowicz, Michal
description This paper considers the problem of exact accelerated algorithms for the K-means clustering of low-dimensional data on modern multi-core systems. A version of the filtering algorithm parallelized using the OpenMP (Open Multi-Processing) standard is proposed. The algorithm employs a kd-tree structure to skip some unnecessary calculations between cluster centroids and feature vectors. In our approach, both the kd-tree construction and the iterations of the K-means are parallelized using the OpenMP tasking mechanism. A new task is created for a recursive call performed during kd-tree construction and traversal. The tasks are executed in parallel by the cores of a shared-memory system. In computational experiments, we evaluated the parallel efficiency of our approach and compared its performance to the parallel Lloyd's method, a GPU (Graphics Processing Unit) formulation of the K-means algorithm, and two parallel triangle inequality-based algorithms intended for low-dimensional data. The evaluation was performed on six synthetic datasets from two distributions and seven real-life datasets. The experiments, executed on a 24-core system, indicated that our version of the filtering algorithm had satisfactory or high parallel efficiency. Its runtime was much shorter than those of competing algorithms. However, the advantage of the parallel filtering algorithm decreased rapidly as the dimension of data increased.
doi_str_mv 10.1109/ACCESS.2021.3080821
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3080821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9432858</ieee_id><doaj_id>oai_doaj_org_article_9664407770d44f1093aa18ff47138e42</doaj_id><sourcerecordid>2532301463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5c7ec95d25e46c2cd87c8ff3f89ae0c880d1dafff80d4e585fb34d0f44d101fd3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX9BLwHPW_O5mz2W-lWsKFQPnsKYTHTLbqPJivTfm7oizmUew3tvmHlFMWF0yhhtzmfz-eVqNeWUs6mgmmrO9oojzqqmFEpU-__wYXGa0prm0nmk6qPieWYtdhhhQEduyzuETSKz7jXEdnjrE_EhkmX4Ki_aHjepDRvoyAUMQMKGPECErsOOrN4gosviPsQtWW3TgH06KQ48dAlPf_tx8XR1-Ti_KZf314v5bFlaSfVQKlujbZTjCmVluXW6ttp74XUDSK3W1DEH3vsMJCqt_IuQjnopHaPMO3FcLEZfF2Bt3mPbQ9yaAK35GYT4aiAOre3QNFUlJa3rOltJn38nAFheJmsmNEqevc5Gr_cYPj4xDWYdPmO-ORmuBBeUyUpklhhZNoaUIvq_rYyaXSRmjMTsIjG_kWTVZFS1iPinaKTgWmnxDXf4hrs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532301463</pqid></control><display><type>article</type><title>Accelerated K-Means Algorithms for Low-Dimensional Data on Parallel Shared-Memory Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kwedlo, Wojciech ; Lubowicz, Michal</creator><creatorcontrib>Kwedlo, Wojciech ; Lubowicz, Michal</creatorcontrib><description>This paper considers the problem of exact accelerated algorithms for the K-means clustering of low-dimensional data on modern multi-core systems. A version of the filtering algorithm parallelized using the OpenMP (Open Multi-Processing) standard is proposed. The algorithm employs a kd-tree structure to skip some unnecessary calculations between cluster centroids and feature vectors. In our approach, both the kd-tree construction and the iterations of the K-means are parallelized using the OpenMP tasking mechanism. A new task is created for a recursive call performed during kd-tree construction and traversal. The tasks are executed in parallel by the cores of a shared-memory system. In computational experiments, we evaluated the parallel efficiency of our approach and compared its performance to the parallel Lloyd's method, a GPU (Graphics Processing Unit) formulation of the K-means algorithm, and two parallel triangle inequality-based algorithms intended for low-dimensional data. The evaluation was performed on six synthetic datasets from two distributions and seven real-life datasets. The experiments, executed on a 24-core system, indicated that our version of the filtering algorithm had satisfactory or high parallel efficiency. Its runtime was much shorter than those of competing algorithms. However, the advantage of the parallel filtering algorithm decreased rapidly as the dimension of data increased.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3080821</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;K -means clustering ; Acceleration of &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;K -means ; Algorithms ; Approximation algorithms ; Centroids ; Cluster analysis ; Clustering ; Clustering algorithms ; Datasets ; Filtration ; Graphics processing units ; Heuristic algorithms ; kd-trees ; OpenMP tasks ; Parallel processing ; parallelization ; Partitioning algorithms ; Signal processing algorithms ; Task analysis ; Vector quantization</subject><ispartof>IEEE access, 2021, Vol.9, p.74286-74301</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5c7ec95d25e46c2cd87c8ff3f89ae0c880d1dafff80d4e585fb34d0f44d101fd3</citedby><cites>FETCH-LOGICAL-c408t-5c7ec95d25e46c2cd87c8ff3f89ae0c880d1dafff80d4e585fb34d0f44d101fd3</cites><orcidid>0000-0002-5040-2302 ; 0000-0002-8907-5505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9432858$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kwedlo, Wojciech</creatorcontrib><creatorcontrib>Lubowicz, Michal</creatorcontrib><title>Accelerated K-Means Algorithms for Low-Dimensional Data on Parallel Shared-Memory Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper considers the problem of exact accelerated algorithms for the K-means clustering of low-dimensional data on modern multi-core systems. A version of the filtering algorithm parallelized using the OpenMP (Open Multi-Processing) standard is proposed. The algorithm employs a kd-tree structure to skip some unnecessary calculations between cluster centroids and feature vectors. In our approach, both the kd-tree construction and the iterations of the K-means are parallelized using the OpenMP tasking mechanism. A new task is created for a recursive call performed during kd-tree construction and traversal. The tasks are executed in parallel by the cores of a shared-memory system. In computational experiments, we evaluated the parallel efficiency of our approach and compared its performance to the parallel Lloyd's method, a GPU (Graphics Processing Unit) formulation of the K-means algorithm, and two parallel triangle inequality-based algorithms intended for low-dimensional data. The evaluation was performed on six synthetic datasets from two distributions and seven real-life datasets. The experiments, executed on a 24-core system, indicated that our version of the filtering algorithm had satisfactory or high parallel efficiency. Its runtime was much shorter than those of competing algorithms. However, the advantage of the parallel filtering algorithm decreased rapidly as the dimension of data increased.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;K -means clustering</subject><subject>Acceleration of &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;K -means</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Centroids</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Datasets</subject><subject>Filtration</subject><subject>Graphics processing units</subject><subject>Heuristic algorithms</subject><subject>kd-trees</subject><subject>OpenMP tasks</subject><subject>Parallel processing</subject><subject>parallelization</subject><subject>Partitioning algorithms</subject><subject>Signal processing algorithms</subject><subject>Task analysis</subject><subject>Vector quantization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX9BLwHPW_O5mz2W-lWsKFQPnsKYTHTLbqPJivTfm7oizmUew3tvmHlFMWF0yhhtzmfz-eVqNeWUs6mgmmrO9oojzqqmFEpU-__wYXGa0prm0nmk6qPieWYtdhhhQEduyzuETSKz7jXEdnjrE_EhkmX4Ki_aHjepDRvoyAUMQMKGPECErsOOrN4gosviPsQtWW3TgH06KQ48dAlPf_tx8XR1-Ti_KZf314v5bFlaSfVQKlujbZTjCmVluXW6ttp74XUDSK3W1DEH3vsMJCqt_IuQjnopHaPMO3FcLEZfF2Bt3mPbQ9yaAK35GYT4aiAOre3QNFUlJa3rOltJn38nAFheJmsmNEqevc5Gr_cYPj4xDWYdPmO-ORmuBBeUyUpklhhZNoaUIvq_rYyaXSRmjMTsIjG_kWTVZFS1iPinaKTgWmnxDXf4hrs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kwedlo, Wojciech</creator><creator>Lubowicz, Michal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5040-2302</orcidid><orcidid>https://orcid.org/0000-0002-8907-5505</orcidid></search><sort><creationdate>2021</creationdate><title>Accelerated K-Means Algorithms for Low-Dimensional Data on Parallel Shared-Memory Systems</title><author>Kwedlo, Wojciech ; Lubowicz, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5c7ec95d25e46c2cd87c8ff3f89ae0c880d1dafff80d4e585fb34d0f44d101fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;K -means clustering</topic><topic>Acceleration of &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;K -means</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Centroids</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Datasets</topic><topic>Filtration</topic><topic>Graphics processing units</topic><topic>Heuristic algorithms</topic><topic>kd-trees</topic><topic>OpenMP tasks</topic><topic>Parallel processing</topic><topic>parallelization</topic><topic>Partitioning algorithms</topic><topic>Signal processing algorithms</topic><topic>Task analysis</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwedlo, Wojciech</creatorcontrib><creatorcontrib>Lubowicz, Michal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwedlo, Wojciech</au><au>Lubowicz, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated K-Means Algorithms for Low-Dimensional Data on Parallel Shared-Memory Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>74286</spage><epage>74301</epage><pages>74286-74301</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper considers the problem of exact accelerated algorithms for the K-means clustering of low-dimensional data on modern multi-core systems. A version of the filtering algorithm parallelized using the OpenMP (Open Multi-Processing) standard is proposed. The algorithm employs a kd-tree structure to skip some unnecessary calculations between cluster centroids and feature vectors. In our approach, both the kd-tree construction and the iterations of the K-means are parallelized using the OpenMP tasking mechanism. A new task is created for a recursive call performed during kd-tree construction and traversal. The tasks are executed in parallel by the cores of a shared-memory system. In computational experiments, we evaluated the parallel efficiency of our approach and compared its performance to the parallel Lloyd's method, a GPU (Graphics Processing Unit) formulation of the K-means algorithm, and two parallel triangle inequality-based algorithms intended for low-dimensional data. The evaluation was performed on six synthetic datasets from two distributions and seven real-life datasets. The experiments, executed on a 24-core system, indicated that our version of the filtering algorithm had satisfactory or high parallel efficiency. Its runtime was much shorter than those of competing algorithms. However, the advantage of the parallel filtering algorithm decreased rapidly as the dimension of data increased.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3080821</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5040-2302</orcidid><orcidid>https://orcid.org/0000-0002-8907-5505</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.74286-74301
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3080821
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means clustering
Acceleration of <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means
Algorithms
Approximation algorithms
Centroids
Cluster analysis
Clustering
Clustering algorithms
Datasets
Filtration
Graphics processing units
Heuristic algorithms
kd-trees
OpenMP tasks
Parallel processing
parallelization
Partitioning algorithms
Signal processing algorithms
Task analysis
Vector quantization
title Accelerated K-Means Algorithms for Low-Dimensional Data on Parallel Shared-Memory Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20K-Means%20Algorithms%20for%20Low-Dimensional%20Data%20on%20Parallel%20Shared-Memory%20Systems&rft.jtitle=IEEE%20access&rft.au=Kwedlo,%20Wojciech&rft.date=2021&rft.volume=9&rft.spage=74286&rft.epage=74301&rft.pages=74286-74301&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3080821&rft_dat=%3Cproquest_cross%3E2532301463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532301463&rft_id=info:pmid/&rft_ieee_id=9432858&rft_doaj_id=oai_doaj_org_article_9664407770d44f1093aa18ff47138e42&rfr_iscdi=true