SI/PI-Database of PCB-Based Interconnects for Machine Learning Applications
A database is presented that allows the investigation of machine learning (ML) tools and techniques in the signal integrity (SI), power integrity (PI), and electromagnetic compatibility (EMC) domains. The database contains different types of printed circuit board (PCB)-based interconnects and corres...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.34423-34432 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34432 |
---|---|
container_issue | |
container_start_page | 34423 |
container_title | IEEE access |
container_volume | 9 |
creator | Schierholz, Morten Sanchez-Masis, Allan Carmona-Cruz, Allan Duan, Xiaomin Roy, Kallol Yang, Cheng Rimolo-Donadio, Renato Schuster, Christian |
description | A database is presented that allows the investigation of machine learning (ML) tools and techniques in the signal integrity (SI), power integrity (PI), and electromagnetic compatibility (EMC) domains. The database contains different types of printed circuit board (PCB)-based interconnects and corresponding frequency domain data from a physics-based (PB) tool and represent multiple electromagnetic (EM) aspects to SI and PI optimization. The interconnects have been used in the past by the authors to investigate ML techniques in SI and PI. However, many more tools and techniques can be developed and applied to these structures. The setup of the database, its data sets, and examples on how to apply ML techniques to the data will be discussed in detail. Overall 78961 variations of interconnects are presented. By making this database available we invite other researchers to apply and customize their ML techniques using our results. This provides the possibility to accelerate ML research in EMC engineering without the need to generate expensive data. |
doi_str_mv | 10.1109/ACCESS.2021.3061788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3061788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9361755</ieee_id><doaj_id>oai_doaj_org_article_d814eca2d9224691980534e570f241c0</doaj_id><sourcerecordid>2498678372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-726a4cc0782dcda8b3d3384f65cdd5744eb6b56482d1de081350ba45590fac5e3</originalsourceid><addsrcrecordid>eNpNUUtLw0AQDqJg0f6CXgKeU_edzbGNVYMVC9Xzstmd1JSarbvpwX_v1pTiXGaY7zEDX5JMMJpijIr7WVku1uspQQRPKRI4l_IiGREsioxyKi7_zdfJOIQtiiXjiuej5GVd3a-q7EH3utYBUtekq3KezeNs06rrwRvXdWD6kDbOp6_afLYdpEvQvmu7TTrb73et0X3runCbXDV6F2B86jfJx-PivXzOlm9PVTlbZoYh2Wc5EZoZg3JJrLFa1tRSKlkjuLGW54xBLWouWISxhfgp5ajWjPMCNdpwoDdJNfhap7dq79sv7X-U0636Wzi_Udr3rdmBshIzMJrYghAmClxIxCkDnqOGMGxQ9LobvPbefR8g9GrrDr6L7yvCCilySXMSWXRgGe9C8NCcr2KkjiGoIQR1DEGdQoiqyaBqAeCsKGhEOae_K2uAIA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498678372</pqid></control><display><type>article</type><title>SI/PI-Database of PCB-Based Interconnects for Machine Learning Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Schierholz, Morten ; Sanchez-Masis, Allan ; Carmona-Cruz, Allan ; Duan, Xiaomin ; Roy, Kallol ; Yang, Cheng ; Rimolo-Donadio, Renato ; Schuster, Christian</creator><creatorcontrib>Schierholz, Morten ; Sanchez-Masis, Allan ; Carmona-Cruz, Allan ; Duan, Xiaomin ; Roy, Kallol ; Yang, Cheng ; Rimolo-Donadio, Renato ; Schuster, Christian</creatorcontrib><description>A database is presented that allows the investigation of machine learning (ML) tools and techniques in the signal integrity (SI), power integrity (PI), and electromagnetic compatibility (EMC) domains. The database contains different types of printed circuit board (PCB)-based interconnects and corresponding frequency domain data from a physics-based (PB) tool and represent multiple electromagnetic (EM) aspects to SI and PI optimization. The interconnects have been used in the past by the authors to investigate ML techniques in SI and PI. However, many more tools and techniques can be developed and applied to these structures. The setup of the database, its data sets, and examples on how to apply ML techniques to the data will be discussed in detail. Overall 78961 variations of interconnects are presented. By making this database available we invite other researchers to apply and customize their ML techniques using our results. This provides the possibility to accelerate ML research in EMC engineering without the need to generate expensive data.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3061788</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural network ; Circuit boards ; Electromagnetic compatibility ; Electromagnetics ; Integrated circuit interconnections ; Interconnections ; Machine learning ; Optimization ; power integrity ; Printed circuits ; Signal integrity ; Simulation</subject><ispartof>IEEE access, 2021, Vol.9, p.34423-34432</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-726a4cc0782dcda8b3d3384f65cdd5744eb6b56482d1de081350ba45590fac5e3</citedby><cites>FETCH-LOGICAL-c408t-726a4cc0782dcda8b3d3384f65cdd5744eb6b56482d1de081350ba45590fac5e3</cites><orcidid>0000-0002-8746-681X ; 0000-0002-3087-9162 ; 0000-0003-4404-8383 ; 0000-0002-2488-036X ; 0000-0003-4019-0788 ; 0000-0002-6557-2689 ; 0000-0001-9184-5030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9361755$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Schierholz, Morten</creatorcontrib><creatorcontrib>Sanchez-Masis, Allan</creatorcontrib><creatorcontrib>Carmona-Cruz, Allan</creatorcontrib><creatorcontrib>Duan, Xiaomin</creatorcontrib><creatorcontrib>Roy, Kallol</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Rimolo-Donadio, Renato</creatorcontrib><creatorcontrib>Schuster, Christian</creatorcontrib><title>SI/PI-Database of PCB-Based Interconnects for Machine Learning Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>A database is presented that allows the investigation of machine learning (ML) tools and techniques in the signal integrity (SI), power integrity (PI), and electromagnetic compatibility (EMC) domains. The database contains different types of printed circuit board (PCB)-based interconnects and corresponding frequency domain data from a physics-based (PB) tool and represent multiple electromagnetic (EM) aspects to SI and PI optimization. The interconnects have been used in the past by the authors to investigate ML techniques in SI and PI. However, many more tools and techniques can be developed and applied to these structures. The setup of the database, its data sets, and examples on how to apply ML techniques to the data will be discussed in detail. Overall 78961 variations of interconnects are presented. By making this database available we invite other researchers to apply and customize their ML techniques using our results. This provides the possibility to accelerate ML research in EMC engineering without the need to generate expensive data.</description><subject>Artificial neural network</subject><subject>Circuit boards</subject><subject>Electromagnetic compatibility</subject><subject>Electromagnetics</subject><subject>Integrated circuit interconnections</subject><subject>Interconnections</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>power integrity</subject><subject>Printed circuits</subject><subject>Signal integrity</subject><subject>Simulation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLw0AQDqJg0f6CXgKeU_edzbGNVYMVC9Xzstmd1JSarbvpwX_v1pTiXGaY7zEDX5JMMJpijIr7WVku1uspQQRPKRI4l_IiGREsioxyKi7_zdfJOIQtiiXjiuej5GVd3a-q7EH3utYBUtekq3KezeNs06rrwRvXdWD6kDbOp6_afLYdpEvQvmu7TTrb73et0X3runCbXDV6F2B86jfJx-PivXzOlm9PVTlbZoYh2Wc5EZoZg3JJrLFa1tRSKlkjuLGW54xBLWouWISxhfgp5ajWjPMCNdpwoDdJNfhap7dq79sv7X-U0636Wzi_Udr3rdmBshIzMJrYghAmClxIxCkDnqOGMGxQ9LobvPbefR8g9GrrDr6L7yvCCilySXMSWXRgGe9C8NCcr2KkjiGoIQR1DEGdQoiqyaBqAeCsKGhEOae_K2uAIA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Schierholz, Morten</creator><creator>Sanchez-Masis, Allan</creator><creator>Carmona-Cruz, Allan</creator><creator>Duan, Xiaomin</creator><creator>Roy, Kallol</creator><creator>Yang, Cheng</creator><creator>Rimolo-Donadio, Renato</creator><creator>Schuster, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8746-681X</orcidid><orcidid>https://orcid.org/0000-0002-3087-9162</orcidid><orcidid>https://orcid.org/0000-0003-4404-8383</orcidid><orcidid>https://orcid.org/0000-0002-2488-036X</orcidid><orcidid>https://orcid.org/0000-0003-4019-0788</orcidid><orcidid>https://orcid.org/0000-0002-6557-2689</orcidid><orcidid>https://orcid.org/0000-0001-9184-5030</orcidid></search><sort><creationdate>2021</creationdate><title>SI/PI-Database of PCB-Based Interconnects for Machine Learning Applications</title><author>Schierholz, Morten ; Sanchez-Masis, Allan ; Carmona-Cruz, Allan ; Duan, Xiaomin ; Roy, Kallol ; Yang, Cheng ; Rimolo-Donadio, Renato ; Schuster, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-726a4cc0782dcda8b3d3384f65cdd5744eb6b56482d1de081350ba45590fac5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural network</topic><topic>Circuit boards</topic><topic>Electromagnetic compatibility</topic><topic>Electromagnetics</topic><topic>Integrated circuit interconnections</topic><topic>Interconnections</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>power integrity</topic><topic>Printed circuits</topic><topic>Signal integrity</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schierholz, Morten</creatorcontrib><creatorcontrib>Sanchez-Masis, Allan</creatorcontrib><creatorcontrib>Carmona-Cruz, Allan</creatorcontrib><creatorcontrib>Duan, Xiaomin</creatorcontrib><creatorcontrib>Roy, Kallol</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Rimolo-Donadio, Renato</creatorcontrib><creatorcontrib>Schuster, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schierholz, Morten</au><au>Sanchez-Masis, Allan</au><au>Carmona-Cruz, Allan</au><au>Duan, Xiaomin</au><au>Roy, Kallol</au><au>Yang, Cheng</au><au>Rimolo-Donadio, Renato</au><au>Schuster, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SI/PI-Database of PCB-Based Interconnects for Machine Learning Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>34423</spage><epage>34432</epage><pages>34423-34432</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A database is presented that allows the investigation of machine learning (ML) tools and techniques in the signal integrity (SI), power integrity (PI), and electromagnetic compatibility (EMC) domains. The database contains different types of printed circuit board (PCB)-based interconnects and corresponding frequency domain data from a physics-based (PB) tool and represent multiple electromagnetic (EM) aspects to SI and PI optimization. The interconnects have been used in the past by the authors to investigate ML techniques in SI and PI. However, many more tools and techniques can be developed and applied to these structures. The setup of the database, its data sets, and examples on how to apply ML techniques to the data will be discussed in detail. Overall 78961 variations of interconnects are presented. By making this database available we invite other researchers to apply and customize their ML techniques using our results. This provides the possibility to accelerate ML research in EMC engineering without the need to generate expensive data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3061788</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8746-681X</orcidid><orcidid>https://orcid.org/0000-0002-3087-9162</orcidid><orcidid>https://orcid.org/0000-0003-4404-8383</orcidid><orcidid>https://orcid.org/0000-0002-2488-036X</orcidid><orcidid>https://orcid.org/0000-0003-4019-0788</orcidid><orcidid>https://orcid.org/0000-0002-6557-2689</orcidid><orcidid>https://orcid.org/0000-0001-9184-5030</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.34423-34432 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3061788 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural network Circuit boards Electromagnetic compatibility Electromagnetics Integrated circuit interconnections Interconnections Machine learning Optimization power integrity Printed circuits Signal integrity Simulation |
title | SI/PI-Database of PCB-Based Interconnects for Machine Learning Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SI/PI-Database%20of%20PCB-Based%20Interconnects%20for%20Machine%20Learning%20Applications&rft.jtitle=IEEE%20access&rft.au=Schierholz,%20Morten&rft.date=2021&rft.volume=9&rft.spage=34423&rft.epage=34432&rft.pages=34423-34432&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3061788&rft_dat=%3Cproquest_cross%3E2498678372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498678372&rft_id=info:pmid/&rft_ieee_id=9361755&rft_doaj_id=oai_doaj_org_article_d814eca2d9224691980534e570f241c0&rfr_iscdi=true |