SI/PI-Database of PCB-Based Interconnects for Machine Learning Applications

A database is presented that allows the investigation of machine learning (ML) tools and techniques in the signal integrity (SI), power integrity (PI), and electromagnetic compatibility (EMC) domains. The database contains different types of printed circuit board (PCB)-based interconnects and corres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.34423-34432
Hauptverfasser: Schierholz, Morten, Sanchez-Masis, Allan, Carmona-Cruz, Allan, Duan, Xiaomin, Roy, Kallol, Yang, Cheng, Rimolo-Donadio, Renato, Schuster, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34432
container_issue
container_start_page 34423
container_title IEEE access
container_volume 9
creator Schierholz, Morten
Sanchez-Masis, Allan
Carmona-Cruz, Allan
Duan, Xiaomin
Roy, Kallol
Yang, Cheng
Rimolo-Donadio, Renato
Schuster, Christian
description A database is presented that allows the investigation of machine learning (ML) tools and techniques in the signal integrity (SI), power integrity (PI), and electromagnetic compatibility (EMC) domains. The database contains different types of printed circuit board (PCB)-based interconnects and corresponding frequency domain data from a physics-based (PB) tool and represent multiple electromagnetic (EM) aspects to SI and PI optimization. The interconnects have been used in the past by the authors to investigate ML techniques in SI and PI. However, many more tools and techniques can be developed and applied to these structures. The setup of the database, its data sets, and examples on how to apply ML techniques to the data will be discussed in detail. Overall 78961 variations of interconnects are presented. By making this database available we invite other researchers to apply and customize their ML techniques using our results. This provides the possibility to accelerate ML research in EMC engineering without the need to generate expensive data.
doi_str_mv 10.1109/ACCESS.2021.3061788
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3061788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9361755</ieee_id><doaj_id>oai_doaj_org_article_d814eca2d9224691980534e570f241c0</doaj_id><sourcerecordid>2498678372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-726a4cc0782dcda8b3d3384f65cdd5744eb6b56482d1de081350ba45590fac5e3</originalsourceid><addsrcrecordid>eNpNUUtLw0AQDqJg0f6CXgKeU_edzbGNVYMVC9Xzstmd1JSarbvpwX_v1pTiXGaY7zEDX5JMMJpijIr7WVku1uspQQRPKRI4l_IiGREsioxyKi7_zdfJOIQtiiXjiuej5GVd3a-q7EH3utYBUtekq3KezeNs06rrwRvXdWD6kDbOp6_afLYdpEvQvmu7TTrb73et0X3runCbXDV6F2B86jfJx-PivXzOlm9PVTlbZoYh2Wc5EZoZg3JJrLFa1tRSKlkjuLGW54xBLWouWISxhfgp5ajWjPMCNdpwoDdJNfhap7dq79sv7X-U0636Wzi_Udr3rdmBshIzMJrYghAmClxIxCkDnqOGMGxQ9LobvPbefR8g9GrrDr6L7yvCCilySXMSWXRgGe9C8NCcr2KkjiGoIQR1DEGdQoiqyaBqAeCsKGhEOae_K2uAIA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498678372</pqid></control><display><type>article</type><title>SI/PI-Database of PCB-Based Interconnects for Machine Learning Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Schierholz, Morten ; Sanchez-Masis, Allan ; Carmona-Cruz, Allan ; Duan, Xiaomin ; Roy, Kallol ; Yang, Cheng ; Rimolo-Donadio, Renato ; Schuster, Christian</creator><creatorcontrib>Schierholz, Morten ; Sanchez-Masis, Allan ; Carmona-Cruz, Allan ; Duan, Xiaomin ; Roy, Kallol ; Yang, Cheng ; Rimolo-Donadio, Renato ; Schuster, Christian</creatorcontrib><description>A database is presented that allows the investigation of machine learning (ML) tools and techniques in the signal integrity (SI), power integrity (PI), and electromagnetic compatibility (EMC) domains. The database contains different types of printed circuit board (PCB)-based interconnects and corresponding frequency domain data from a physics-based (PB) tool and represent multiple electromagnetic (EM) aspects to SI and PI optimization. The interconnects have been used in the past by the authors to investigate ML techniques in SI and PI. However, many more tools and techniques can be developed and applied to these structures. The setup of the database, its data sets, and examples on how to apply ML techniques to the data will be discussed in detail. Overall 78961 variations of interconnects are presented. By making this database available we invite other researchers to apply and customize their ML techniques using our results. This provides the possibility to accelerate ML research in EMC engineering without the need to generate expensive data.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3061788</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural network ; Circuit boards ; Electromagnetic compatibility ; Electromagnetics ; Integrated circuit interconnections ; Interconnections ; Machine learning ; Optimization ; power integrity ; Printed circuits ; Signal integrity ; Simulation</subject><ispartof>IEEE access, 2021, Vol.9, p.34423-34432</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-726a4cc0782dcda8b3d3384f65cdd5744eb6b56482d1de081350ba45590fac5e3</citedby><cites>FETCH-LOGICAL-c408t-726a4cc0782dcda8b3d3384f65cdd5744eb6b56482d1de081350ba45590fac5e3</cites><orcidid>0000-0002-8746-681X ; 0000-0002-3087-9162 ; 0000-0003-4404-8383 ; 0000-0002-2488-036X ; 0000-0003-4019-0788 ; 0000-0002-6557-2689 ; 0000-0001-9184-5030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9361755$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Schierholz, Morten</creatorcontrib><creatorcontrib>Sanchez-Masis, Allan</creatorcontrib><creatorcontrib>Carmona-Cruz, Allan</creatorcontrib><creatorcontrib>Duan, Xiaomin</creatorcontrib><creatorcontrib>Roy, Kallol</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Rimolo-Donadio, Renato</creatorcontrib><creatorcontrib>Schuster, Christian</creatorcontrib><title>SI/PI-Database of PCB-Based Interconnects for Machine Learning Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>A database is presented that allows the investigation of machine learning (ML) tools and techniques in the signal integrity (SI), power integrity (PI), and electromagnetic compatibility (EMC) domains. The database contains different types of printed circuit board (PCB)-based interconnects and corresponding frequency domain data from a physics-based (PB) tool and represent multiple electromagnetic (EM) aspects to SI and PI optimization. The interconnects have been used in the past by the authors to investigate ML techniques in SI and PI. However, many more tools and techniques can be developed and applied to these structures. The setup of the database, its data sets, and examples on how to apply ML techniques to the data will be discussed in detail. Overall 78961 variations of interconnects are presented. By making this database available we invite other researchers to apply and customize their ML techniques using our results. This provides the possibility to accelerate ML research in EMC engineering without the need to generate expensive data.</description><subject>Artificial neural network</subject><subject>Circuit boards</subject><subject>Electromagnetic compatibility</subject><subject>Electromagnetics</subject><subject>Integrated circuit interconnections</subject><subject>Interconnections</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>power integrity</subject><subject>Printed circuits</subject><subject>Signal integrity</subject><subject>Simulation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLw0AQDqJg0f6CXgKeU_edzbGNVYMVC9Xzstmd1JSarbvpwX_v1pTiXGaY7zEDX5JMMJpijIr7WVku1uspQQRPKRI4l_IiGREsioxyKi7_zdfJOIQtiiXjiuej5GVd3a-q7EH3utYBUtekq3KezeNs06rrwRvXdWD6kDbOp6_afLYdpEvQvmu7TTrb73et0X3runCbXDV6F2B86jfJx-PivXzOlm9PVTlbZoYh2Wc5EZoZg3JJrLFa1tRSKlkjuLGW54xBLWouWISxhfgp5ajWjPMCNdpwoDdJNfhap7dq79sv7X-U0636Wzi_Udr3rdmBshIzMJrYghAmClxIxCkDnqOGMGxQ9LobvPbefR8g9GrrDr6L7yvCCilySXMSWXRgGe9C8NCcr2KkjiGoIQR1DEGdQoiqyaBqAeCsKGhEOae_K2uAIA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Schierholz, Morten</creator><creator>Sanchez-Masis, Allan</creator><creator>Carmona-Cruz, Allan</creator><creator>Duan, Xiaomin</creator><creator>Roy, Kallol</creator><creator>Yang, Cheng</creator><creator>Rimolo-Donadio, Renato</creator><creator>Schuster, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8746-681X</orcidid><orcidid>https://orcid.org/0000-0002-3087-9162</orcidid><orcidid>https://orcid.org/0000-0003-4404-8383</orcidid><orcidid>https://orcid.org/0000-0002-2488-036X</orcidid><orcidid>https://orcid.org/0000-0003-4019-0788</orcidid><orcidid>https://orcid.org/0000-0002-6557-2689</orcidid><orcidid>https://orcid.org/0000-0001-9184-5030</orcidid></search><sort><creationdate>2021</creationdate><title>SI/PI-Database of PCB-Based Interconnects for Machine Learning Applications</title><author>Schierholz, Morten ; Sanchez-Masis, Allan ; Carmona-Cruz, Allan ; Duan, Xiaomin ; Roy, Kallol ; Yang, Cheng ; Rimolo-Donadio, Renato ; Schuster, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-726a4cc0782dcda8b3d3384f65cdd5744eb6b56482d1de081350ba45590fac5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural network</topic><topic>Circuit boards</topic><topic>Electromagnetic compatibility</topic><topic>Electromagnetics</topic><topic>Integrated circuit interconnections</topic><topic>Interconnections</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>power integrity</topic><topic>Printed circuits</topic><topic>Signal integrity</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schierholz, Morten</creatorcontrib><creatorcontrib>Sanchez-Masis, Allan</creatorcontrib><creatorcontrib>Carmona-Cruz, Allan</creatorcontrib><creatorcontrib>Duan, Xiaomin</creatorcontrib><creatorcontrib>Roy, Kallol</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Rimolo-Donadio, Renato</creatorcontrib><creatorcontrib>Schuster, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schierholz, Morten</au><au>Sanchez-Masis, Allan</au><au>Carmona-Cruz, Allan</au><au>Duan, Xiaomin</au><au>Roy, Kallol</au><au>Yang, Cheng</au><au>Rimolo-Donadio, Renato</au><au>Schuster, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SI/PI-Database of PCB-Based Interconnects for Machine Learning Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>34423</spage><epage>34432</epage><pages>34423-34432</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A database is presented that allows the investigation of machine learning (ML) tools and techniques in the signal integrity (SI), power integrity (PI), and electromagnetic compatibility (EMC) domains. The database contains different types of printed circuit board (PCB)-based interconnects and corresponding frequency domain data from a physics-based (PB) tool and represent multiple electromagnetic (EM) aspects to SI and PI optimization. The interconnects have been used in the past by the authors to investigate ML techniques in SI and PI. However, many more tools and techniques can be developed and applied to these structures. The setup of the database, its data sets, and examples on how to apply ML techniques to the data will be discussed in detail. Overall 78961 variations of interconnects are presented. By making this database available we invite other researchers to apply and customize their ML techniques using our results. This provides the possibility to accelerate ML research in EMC engineering without the need to generate expensive data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3061788</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8746-681X</orcidid><orcidid>https://orcid.org/0000-0002-3087-9162</orcidid><orcidid>https://orcid.org/0000-0003-4404-8383</orcidid><orcidid>https://orcid.org/0000-0002-2488-036X</orcidid><orcidid>https://orcid.org/0000-0003-4019-0788</orcidid><orcidid>https://orcid.org/0000-0002-6557-2689</orcidid><orcidid>https://orcid.org/0000-0001-9184-5030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.34423-34432
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3061788
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural network
Circuit boards
Electromagnetic compatibility
Electromagnetics
Integrated circuit interconnections
Interconnections
Machine learning
Optimization
power integrity
Printed circuits
Signal integrity
Simulation
title SI/PI-Database of PCB-Based Interconnects for Machine Learning Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SI/PI-Database%20of%20PCB-Based%20Interconnects%20for%20Machine%20Learning%20Applications&rft.jtitle=IEEE%20access&rft.au=Schierholz,%20Morten&rft.date=2021&rft.volume=9&rft.spage=34423&rft.epage=34432&rft.pages=34423-34432&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3061788&rft_dat=%3Cproquest_cross%3E2498678372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498678372&rft_id=info:pmid/&rft_ieee_id=9361755&rft_doaj_id=oai_doaj_org_article_d814eca2d9224691980534e570f241c0&rfr_iscdi=true