Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning
The Internet of Things (IoT) is here and has permeated every aspect of our lives. A disturbing fact is that the majority of all IoT devices employ weak or no encryption at all. This coupled with recent advances within the areas of computational power and deep learning has increased interest in Speci...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.17100-17113 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17113 |
---|---|
container_issue | |
container_start_page | 17100 |
container_title | IEEE access |
container_volume | 9 |
creator | Fadul, Mohamed K. M. Reising, Donald R. Sartipi, Mina |
description | The Internet of Things (IoT) is here and has permeated every aspect of our lives. A disturbing fact is that the majority of all IoT devices employ weak or no encryption at all. This coupled with recent advances within the areas of computational power and deep learning has increased interest in Specific Emitter Identification (SEI) as an effective means of IoT security. Deep learning is capable of in-situ extraction of discriminating features, making it well suited to discrimination of wireless transmitters without the need for feature engineering. However, the accuracy of the deep learning model is adversely affected by time-varying channel conditions. The time-varying nature is attributed to the mobility of the transmitter, receiver, objects within the operations environment, or combinations thereof. This can result in the channel conditions changing faster than the deep learning algorithm is capable of handling. This paper assesses deep learning-based SEI using waveforms that undergo Rayleigh fading, as well as channel estimation and equalization, prior to being input into a deep learning algorithm. |
doi_str_mv | 10.1109/ACCESS.2021.3053491 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3053491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9330580</ieee_id><doaj_id>oai_doaj_org_article_3be9bceb53de48cba02a2e3306e8bf18</doaj_id><sourcerecordid>2486592953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-c4ad664bee2b3b70fe0a14ae00c3ae720d66a4e645776e061aec85589c4b17543</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoLCWl-QS6CntfV92qPrh23BicBu4bcxEg768q4K1faHPLvK3dD6BxmRm_mvRG8qrpjdMYYbb_OF4v73W7GKWczQZWQLftQXXOm21oooT_-119VtzkfaQlTINVcV8_rDocx9MHDGOJAYk-eVsuH-htk7MgWuhAz2Q8dpvJ4PWE4_CKrgg4Hss-XvF3Vy8c5gaEjS8Qz2SCkoQw-V596OGW8fas31X51_3Pxo948fV8v5pvay8aMJUOntXSI3AnX0B4pMAlIqReADadlChK1VE2jkWoG6I1SpvXSsUZJcVOtJ90uwtGeU_gN6dVGCPYfENPBQhqDP6EVDlvn0SnRoTTeAeXAUQiq0biemaL1ZdI6p_jnBfNoj_ElDeX7lkujVctbJcqWmLZ8ijkn7N-vMmovjtjJEXtxxL45Ulh3Eysg4jujLdeVoeIvwYGFRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486592953</pqid></control><display><type>article</type><title>Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fadul, Mohamed K. M. ; Reising, Donald R. ; Sartipi, Mina</creator><creatorcontrib>Fadul, Mohamed K. M. ; Reising, Donald R. ; Sartipi, Mina</creatorcontrib><description>The Internet of Things (IoT) is here and has permeated every aspect of our lives. A disturbing fact is that the majority of all IoT devices employ weak or no encryption at all. This coupled with recent advances within the areas of computational power and deep learning has increased interest in Specific Emitter Identification (SEI) as an effective means of IoT security. Deep learning is capable of in-situ extraction of discriminating features, making it well suited to discrimination of wireless transmitters without the need for feature engineering. However, the accuracy of the deep learning model is adversely affected by time-varying channel conditions. The time-varying nature is attributed to the mobility of the transmitter, receiver, objects within the operations environment, or combinations thereof. This can result in the channel conditions changing faster than the deep learning algorithm is capable of handling. This paper assesses deep learning-based SEI using waveforms that undergo Rayleigh fading, as well as channel estimation and equalization, prior to being input into a deep learning algorithm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3053491</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; AutoEncoder ; Channel estimation ; convolutional neural network (CNN) ; Deep learning ; Emitters ; Encryption ; Equalization ; Fading ; feature engineering ; Feature extraction ; Internet of Things ; Machine learning ; Model accuracy ; OFDM ; radio frequency (RF) fingerprinting ; Rayleigh channels ; Security ; specific emitter identification (SEI) ; Transmitters ; Waveforms ; Wireless fidelity</subject><ispartof>IEEE access, 2021, Vol.9, p.17100-17113</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-c4ad664bee2b3b70fe0a14ae00c3ae720d66a4e645776e061aec85589c4b17543</citedby><cites>FETCH-LOGICAL-c478t-c4ad664bee2b3b70fe0a14ae00c3ae720d66a4e645776e061aec85589c4b17543</cites><orcidid>0000-0002-9393-7104 ; 0000-0003-4392-3385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9330580$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Fadul, Mohamed K. M.</creatorcontrib><creatorcontrib>Reising, Donald R.</creatorcontrib><creatorcontrib>Sartipi, Mina</creatorcontrib><title>Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Internet of Things (IoT) is here and has permeated every aspect of our lives. A disturbing fact is that the majority of all IoT devices employ weak or no encryption at all. This coupled with recent advances within the areas of computational power and deep learning has increased interest in Specific Emitter Identification (SEI) as an effective means of IoT security. Deep learning is capable of in-situ extraction of discriminating features, making it well suited to discrimination of wireless transmitters without the need for feature engineering. However, the accuracy of the deep learning model is adversely affected by time-varying channel conditions. The time-varying nature is attributed to the mobility of the transmitter, receiver, objects within the operations environment, or combinations thereof. This can result in the channel conditions changing faster than the deep learning algorithm is capable of handling. This paper assesses deep learning-based SEI using waveforms that undergo Rayleigh fading, as well as channel estimation and equalization, prior to being input into a deep learning algorithm.</description><subject>Algorithms</subject><subject>AutoEncoder</subject><subject>Channel estimation</subject><subject>convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>Emitters</subject><subject>Encryption</subject><subject>Equalization</subject><subject>Fading</subject><subject>feature engineering</subject><subject>Feature extraction</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>OFDM</subject><subject>radio frequency (RF) fingerprinting</subject><subject>Rayleigh channels</subject><subject>Security</subject><subject>specific emitter identification (SEI)</subject><subject>Transmitters</subject><subject>Waveforms</subject><subject>Wireless fidelity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoLCWl-QS6CntfV92qPrh23BicBu4bcxEg768q4K1faHPLvK3dD6BxmRm_mvRG8qrpjdMYYbb_OF4v73W7GKWczQZWQLftQXXOm21oooT_-119VtzkfaQlTINVcV8_rDocx9MHDGOJAYk-eVsuH-htk7MgWuhAz2Q8dpvJ4PWE4_CKrgg4Hss-XvF3Vy8c5gaEjS8Qz2SCkoQw-V596OGW8fas31X51_3Pxo948fV8v5pvay8aMJUOntXSI3AnX0B4pMAlIqReADadlChK1VE2jkWoG6I1SpvXSsUZJcVOtJ90uwtGeU_gN6dVGCPYfENPBQhqDP6EVDlvn0SnRoTTeAeXAUQiq0biemaL1ZdI6p_jnBfNoj_ElDeX7lkujVctbJcqWmLZ8ijkn7N-vMmovjtjJEXtxxL45Ulh3Eysg4jujLdeVoeIvwYGFRA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Fadul, Mohamed K. M.</creator><creator>Reising, Donald R.</creator><creator>Sartipi, Mina</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9393-7104</orcidid><orcidid>https://orcid.org/0000-0003-4392-3385</orcidid></search><sort><creationdate>2021</creationdate><title>Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning</title><author>Fadul, Mohamed K. M. ; Reising, Donald R. ; Sartipi, Mina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-c4ad664bee2b3b70fe0a14ae00c3ae720d66a4e645776e061aec85589c4b17543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>AutoEncoder</topic><topic>Channel estimation</topic><topic>convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>Emitters</topic><topic>Encryption</topic><topic>Equalization</topic><topic>Fading</topic><topic>feature engineering</topic><topic>Feature extraction</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>OFDM</topic><topic>radio frequency (RF) fingerprinting</topic><topic>Rayleigh channels</topic><topic>Security</topic><topic>specific emitter identification (SEI)</topic><topic>Transmitters</topic><topic>Waveforms</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fadul, Mohamed K. M.</creatorcontrib><creatorcontrib>Reising, Donald R.</creatorcontrib><creatorcontrib>Sartipi, Mina</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fadul, Mohamed K. M.</au><au>Reising, Donald R.</au><au>Sartipi, Mina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>17100</spage><epage>17113</epage><pages>17100-17113</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Internet of Things (IoT) is here and has permeated every aspect of our lives. A disturbing fact is that the majority of all IoT devices employ weak or no encryption at all. This coupled with recent advances within the areas of computational power and deep learning has increased interest in Specific Emitter Identification (SEI) as an effective means of IoT security. Deep learning is capable of in-situ extraction of discriminating features, making it well suited to discrimination of wireless transmitters without the need for feature engineering. However, the accuracy of the deep learning model is adversely affected by time-varying channel conditions. The time-varying nature is attributed to the mobility of the transmitter, receiver, objects within the operations environment, or combinations thereof. This can result in the channel conditions changing faster than the deep learning algorithm is capable of handling. This paper assesses deep learning-based SEI using waveforms that undergo Rayleigh fading, as well as channel estimation and equalization, prior to being input into a deep learning algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3053491</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9393-7104</orcidid><orcidid>https://orcid.org/0000-0003-4392-3385</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.17100-17113 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3053491 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms AutoEncoder Channel estimation convolutional neural network (CNN) Deep learning Emitters Encryption Equalization Fading feature engineering Feature extraction Internet of Things Machine learning Model accuracy OFDM radio frequency (RF) fingerprinting Rayleigh channels Security specific emitter identification (SEI) Transmitters Waveforms Wireless fidelity |
title | Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20OFDM-Based%20Radios%20Under%20Rayleigh%20Fading%20Using%20RF-DNA%20and%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Fadul,%20Mohamed%20K.%20M.&rft.date=2021&rft.volume=9&rft.spage=17100&rft.epage=17113&rft.pages=17100-17113&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3053491&rft_dat=%3Cproquest_cross%3E2486592953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486592953&rft_id=info:pmid/&rft_ieee_id=9330580&rft_doaj_id=oai_doaj_org_article_3be9bceb53de48cba02a2e3306e8bf18&rfr_iscdi=true |