Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning

The Internet of Things (IoT) is here and has permeated every aspect of our lives. A disturbing fact is that the majority of all IoT devices employ weak or no encryption at all. This coupled with recent advances within the areas of computational power and deep learning has increased interest in Speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.17100-17113
Hauptverfasser: Fadul, Mohamed K. M., Reising, Donald R., Sartipi, Mina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17113
container_issue
container_start_page 17100
container_title IEEE access
container_volume 9
creator Fadul, Mohamed K. M.
Reising, Donald R.
Sartipi, Mina
description The Internet of Things (IoT) is here and has permeated every aspect of our lives. A disturbing fact is that the majority of all IoT devices employ weak or no encryption at all. This coupled with recent advances within the areas of computational power and deep learning has increased interest in Specific Emitter Identification (SEI) as an effective means of IoT security. Deep learning is capable of in-situ extraction of discriminating features, making it well suited to discrimination of wireless transmitters without the need for feature engineering. However, the accuracy of the deep learning model is adversely affected by time-varying channel conditions. The time-varying nature is attributed to the mobility of the transmitter, receiver, objects within the operations environment, or combinations thereof. This can result in the channel conditions changing faster than the deep learning algorithm is capable of handling. This paper assesses deep learning-based SEI using waveforms that undergo Rayleigh fading, as well as channel estimation and equalization, prior to being input into a deep learning algorithm.
doi_str_mv 10.1109/ACCESS.2021.3053491
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3053491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9330580</ieee_id><doaj_id>oai_doaj_org_article_3be9bceb53de48cba02a2e3306e8bf18</doaj_id><sourcerecordid>2486592953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-c4ad664bee2b3b70fe0a14ae00c3ae720d66a4e645776e061aec85589c4b17543</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoLCWl-QS6CntfV92qPrh23BicBu4bcxEg768q4K1faHPLvK3dD6BxmRm_mvRG8qrpjdMYYbb_OF4v73W7GKWczQZWQLftQXXOm21oooT_-119VtzkfaQlTINVcV8_rDocx9MHDGOJAYk-eVsuH-htk7MgWuhAz2Q8dpvJ4PWE4_CKrgg4Hss-XvF3Vy8c5gaEjS8Qz2SCkoQw-V596OGW8fas31X51_3Pxo948fV8v5pvay8aMJUOntXSI3AnX0B4pMAlIqReADadlChK1VE2jkWoG6I1SpvXSsUZJcVOtJ90uwtGeU_gN6dVGCPYfENPBQhqDP6EVDlvn0SnRoTTeAeXAUQiq0biemaL1ZdI6p_jnBfNoj_ElDeX7lkujVctbJcqWmLZ8ijkn7N-vMmovjtjJEXtxxL45Ulh3Eysg4jujLdeVoeIvwYGFRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486592953</pqid></control><display><type>article</type><title>Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fadul, Mohamed K. M. ; Reising, Donald R. ; Sartipi, Mina</creator><creatorcontrib>Fadul, Mohamed K. M. ; Reising, Donald R. ; Sartipi, Mina</creatorcontrib><description>The Internet of Things (IoT) is here and has permeated every aspect of our lives. A disturbing fact is that the majority of all IoT devices employ weak or no encryption at all. This coupled with recent advances within the areas of computational power and deep learning has increased interest in Specific Emitter Identification (SEI) as an effective means of IoT security. Deep learning is capable of in-situ extraction of discriminating features, making it well suited to discrimination of wireless transmitters without the need for feature engineering. However, the accuracy of the deep learning model is adversely affected by time-varying channel conditions. The time-varying nature is attributed to the mobility of the transmitter, receiver, objects within the operations environment, or combinations thereof. This can result in the channel conditions changing faster than the deep learning algorithm is capable of handling. This paper assesses deep learning-based SEI using waveforms that undergo Rayleigh fading, as well as channel estimation and equalization, prior to being input into a deep learning algorithm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3053491</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; AutoEncoder ; Channel estimation ; convolutional neural network (CNN) ; Deep learning ; Emitters ; Encryption ; Equalization ; Fading ; feature engineering ; Feature extraction ; Internet of Things ; Machine learning ; Model accuracy ; OFDM ; radio frequency (RF) fingerprinting ; Rayleigh channels ; Security ; specific emitter identification (SEI) ; Transmitters ; Waveforms ; Wireless fidelity</subject><ispartof>IEEE access, 2021, Vol.9, p.17100-17113</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-c4ad664bee2b3b70fe0a14ae00c3ae720d66a4e645776e061aec85589c4b17543</citedby><cites>FETCH-LOGICAL-c478t-c4ad664bee2b3b70fe0a14ae00c3ae720d66a4e645776e061aec85589c4b17543</cites><orcidid>0000-0002-9393-7104 ; 0000-0003-4392-3385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9330580$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Fadul, Mohamed K. M.</creatorcontrib><creatorcontrib>Reising, Donald R.</creatorcontrib><creatorcontrib>Sartipi, Mina</creatorcontrib><title>Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Internet of Things (IoT) is here and has permeated every aspect of our lives. A disturbing fact is that the majority of all IoT devices employ weak or no encryption at all. This coupled with recent advances within the areas of computational power and deep learning has increased interest in Specific Emitter Identification (SEI) as an effective means of IoT security. Deep learning is capable of in-situ extraction of discriminating features, making it well suited to discrimination of wireless transmitters without the need for feature engineering. However, the accuracy of the deep learning model is adversely affected by time-varying channel conditions. The time-varying nature is attributed to the mobility of the transmitter, receiver, objects within the operations environment, or combinations thereof. This can result in the channel conditions changing faster than the deep learning algorithm is capable of handling. This paper assesses deep learning-based SEI using waveforms that undergo Rayleigh fading, as well as channel estimation and equalization, prior to being input into a deep learning algorithm.</description><subject>Algorithms</subject><subject>AutoEncoder</subject><subject>Channel estimation</subject><subject>convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>Emitters</subject><subject>Encryption</subject><subject>Equalization</subject><subject>Fading</subject><subject>feature engineering</subject><subject>Feature extraction</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>OFDM</subject><subject>radio frequency (RF) fingerprinting</subject><subject>Rayleigh channels</subject><subject>Security</subject><subject>specific emitter identification (SEI)</subject><subject>Transmitters</subject><subject>Waveforms</subject><subject>Wireless fidelity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoLCWl-QS6CntfV92qPrh23BicBu4bcxEg768q4K1faHPLvK3dD6BxmRm_mvRG8qrpjdMYYbb_OF4v73W7GKWczQZWQLftQXXOm21oooT_-119VtzkfaQlTINVcV8_rDocx9MHDGOJAYk-eVsuH-htk7MgWuhAz2Q8dpvJ4PWE4_CKrgg4Hss-XvF3Vy8c5gaEjS8Qz2SCkoQw-V596OGW8fas31X51_3Pxo948fV8v5pvay8aMJUOntXSI3AnX0B4pMAlIqReADadlChK1VE2jkWoG6I1SpvXSsUZJcVOtJ90uwtGeU_gN6dVGCPYfENPBQhqDP6EVDlvn0SnRoTTeAeXAUQiq0biemaL1ZdI6p_jnBfNoj_ElDeX7lkujVctbJcqWmLZ8ijkn7N-vMmovjtjJEXtxxL45Ulh3Eysg4jujLdeVoeIvwYGFRA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Fadul, Mohamed K. M.</creator><creator>Reising, Donald R.</creator><creator>Sartipi, Mina</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9393-7104</orcidid><orcidid>https://orcid.org/0000-0003-4392-3385</orcidid></search><sort><creationdate>2021</creationdate><title>Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning</title><author>Fadul, Mohamed K. M. ; Reising, Donald R. ; Sartipi, Mina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-c4ad664bee2b3b70fe0a14ae00c3ae720d66a4e645776e061aec85589c4b17543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>AutoEncoder</topic><topic>Channel estimation</topic><topic>convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>Emitters</topic><topic>Encryption</topic><topic>Equalization</topic><topic>Fading</topic><topic>feature engineering</topic><topic>Feature extraction</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>OFDM</topic><topic>radio frequency (RF) fingerprinting</topic><topic>Rayleigh channels</topic><topic>Security</topic><topic>specific emitter identification (SEI)</topic><topic>Transmitters</topic><topic>Waveforms</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fadul, Mohamed K. M.</creatorcontrib><creatorcontrib>Reising, Donald R.</creatorcontrib><creatorcontrib>Sartipi, Mina</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fadul, Mohamed K. M.</au><au>Reising, Donald R.</au><au>Sartipi, Mina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>17100</spage><epage>17113</epage><pages>17100-17113</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Internet of Things (IoT) is here and has permeated every aspect of our lives. A disturbing fact is that the majority of all IoT devices employ weak or no encryption at all. This coupled with recent advances within the areas of computational power and deep learning has increased interest in Specific Emitter Identification (SEI) as an effective means of IoT security. Deep learning is capable of in-situ extraction of discriminating features, making it well suited to discrimination of wireless transmitters without the need for feature engineering. However, the accuracy of the deep learning model is adversely affected by time-varying channel conditions. The time-varying nature is attributed to the mobility of the transmitter, receiver, objects within the operations environment, or combinations thereof. This can result in the channel conditions changing faster than the deep learning algorithm is capable of handling. This paper assesses deep learning-based SEI using waveforms that undergo Rayleigh fading, as well as channel estimation and equalization, prior to being input into a deep learning algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3053491</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9393-7104</orcidid><orcidid>https://orcid.org/0000-0003-4392-3385</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.17100-17113
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3053491
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
AutoEncoder
Channel estimation
convolutional neural network (CNN)
Deep learning
Emitters
Encryption
Equalization
Fading
feature engineering
Feature extraction
Internet of Things
Machine learning
Model accuracy
OFDM
radio frequency (RF) fingerprinting
Rayleigh channels
Security
specific emitter identification (SEI)
Transmitters
Waveforms
Wireless fidelity
title Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20OFDM-Based%20Radios%20Under%20Rayleigh%20Fading%20Using%20RF-DNA%20and%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Fadul,%20Mohamed%20K.%20M.&rft.date=2021&rft.volume=9&rft.spage=17100&rft.epage=17113&rft.pages=17100-17113&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3053491&rft_dat=%3Cproquest_cross%3E2486592953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486592953&rft_id=info:pmid/&rft_ieee_id=9330580&rft_doaj_id=oai_doaj_org_article_3be9bceb53de48cba02a2e3306e8bf18&rfr_iscdi=true