The Construction of Multiple Independent Spanning Trees on Burnt Pancake Networks

A set of the spanning trees in a graph G is called independent spanning trees if they have a common root r and for each vertex v\in V(G)\setminus \{r\} , the paths from v to r in any two trees are directed edge-disjoint and internally vertex-disjoint. The construction of independent spannin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.16679-16691
Hauptverfasser: Yang, Yi-Cheng, Kao, Shih-Shun, Klasing, Ralf, Hsieh, Sun-Yuan, Chou, Hsin-Hung, Chang, Jou-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16691
container_issue
container_start_page 16679
container_title IEEE access
container_volume 9
creator Yang, Yi-Cheng
Kao, Shih-Shun
Klasing, Ralf
Hsieh, Sun-Yuan
Chou, Hsin-Hung
Chang, Jou-Ming
description A set of the spanning trees in a graph G is called independent spanning trees if they have a common root r and for each vertex v\in V(G)\setminus \{r\} , the paths from v to r in any two trees are directed edge-disjoint and internally vertex-disjoint. The construction of independent spanning trees has many practical applications in reliable communication networks, such as fault-tolerant transmission and secure message distribution. A burnt pancake network BP_{n} is a kind of Cayley graph, which has been proposed as the topology of an interconnection network. In this paper, we provide a two stages construction scheme that can be used to construct a maximal number of independent spanning trees on a burnt pancake network in O(N\times n) time, where N is the number of nodes of BP_{n} and n is the dimension of the network. Furthermore, we prove the correctness of our proposed algorithm in constructing independent spanning trees.
doi_str_mv 10.1109/ACCESS.2021.3049290
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3049290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9314008</ieee_id><doaj_id>oai_doaj_org_article_13180a7439f249ae8998ae6cf6bb3713</doaj_id><sourcerecordid>2483255448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-4ee9afddd695d1c632b550af42ff0a1c7b4ead127231db951037b6a8273573043</originalsourceid><addsrcrecordid>eNpVUU1P3DAQtSoqFS38Ai6ReuphF48_4vi4RFBWWmirXc6Wk4whS4hTO1vEv8dLECpzmLGe3nua8SPkDOgCgOrzZVlebjYLRhksOBWaafqFHDPI9ZxLnh_99_5GTmPc0VRFgqQ6Jn-2D5iVvo9j2Ndj6_vMu-xm343t0GG26hscMLV-zDaD7fu2v8-2ATFmiXmxDwn_bfvaPmJ2i-OzD4_xhHx1tot4-j5n5O7qcltez9e_fq7K5XpeC8HGuUDU1jVNk_ZooM45q6Sk1gnmHLVQq0qgbYApxqGptATKVZXbgikuVTqTz8hq8m283ZkhtE82vBhvW_MG-HBvbBjbukMDHApqleDaMaEtFloXFvPa5VXFFfDk9WPyerDdJ6vr5docMMqFAAXyHyTu94k7BP93j3E0O58-Ip1qmCg4k1KkMSN8YtXBxxjQfdgCNYfYzBSbOcRm3mNLqrNJ1SLih0JzECkx_grkWpFP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483255448</pqid></control><display><type>article</type><title>The Construction of Multiple Independent Spanning Trees on Burnt Pancake Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Yi-Cheng ; Kao, Shih-Shun ; Klasing, Ralf ; Hsieh, Sun-Yuan ; Chou, Hsin-Hung ; Chang, Jou-Ming</creator><creatorcontrib>Yang, Yi-Cheng ; Kao, Shih-Shun ; Klasing, Ralf ; Hsieh, Sun-Yuan ; Chou, Hsin-Hung ; Chang, Jou-Ming</creatorcontrib><description><![CDATA[A set of the spanning trees in a graph <inline-formula> <tex-math notation="LaTeX">G </tex-math></inline-formula> is called independent spanning trees if they have a common root <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> and for each vertex <inline-formula> <tex-math notation="LaTeX">v\in V(G)\setminus \{r\} </tex-math></inline-formula>, the paths from <inline-formula> <tex-math notation="LaTeX">v </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> in any two trees are directed edge-disjoint and internally vertex-disjoint. The construction of independent spanning trees has many practical applications in reliable communication networks, such as fault-tolerant transmission and secure message distribution. A burnt pancake network <inline-formula> <tex-math notation="LaTeX">BP_{n} </tex-math></inline-formula> is a kind of Cayley graph, which has been proposed as the topology of an interconnection network. In this paper, we provide a two stages construction scheme that can be used to construct a maximal number of independent spanning trees on a burnt pancake network in <inline-formula> <tex-math notation="LaTeX">O(N\times n) </tex-math></inline-formula> time, where <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> is the number of nodes of <inline-formula> <tex-math notation="LaTeX">BP_{n} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the dimension of the network. Furthermore, we prove the correctness of our proposed algorithm in constructing independent spanning trees.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3049290</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; burnt pancake network ; Communication networks ; Computer Science ; Fault tolerance ; Fault tolerant systems ; fault-tolerant transmission ; Graph theory ; Independent spanning trees ; interconnection networks ; Networking and Internet Architecture ; Program processors ; Roads ; secure message distribution ; Topology ; Trees (mathematics) ; Vegetation</subject><ispartof>IEEE access, 2021, Vol.9, p.16679-16691</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-4ee9afddd695d1c632b550af42ff0a1c7b4ead127231db951037b6a8273573043</citedby><cites>FETCH-LOGICAL-c442t-4ee9afddd695d1c632b550af42ff0a1c7b4ead127231db951037b6a8273573043</cites><orcidid>0000-0001-7695-3535 ; 0000-0002-9542-7968 ; 0000-0003-1627-9598 ; 0000-0003-4746-3179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9314008$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2096,4010,27610,27900,27901,27902,54908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03441715$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yi-Cheng</creatorcontrib><creatorcontrib>Kao, Shih-Shun</creatorcontrib><creatorcontrib>Klasing, Ralf</creatorcontrib><creatorcontrib>Hsieh, Sun-Yuan</creatorcontrib><creatorcontrib>Chou, Hsin-Hung</creatorcontrib><creatorcontrib>Chang, Jou-Ming</creatorcontrib><title>The Construction of Multiple Independent Spanning Trees on Burnt Pancake Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[A set of the spanning trees in a graph <inline-formula> <tex-math notation="LaTeX">G </tex-math></inline-formula> is called independent spanning trees if they have a common root <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> and for each vertex <inline-formula> <tex-math notation="LaTeX">v\in V(G)\setminus \{r\} </tex-math></inline-formula>, the paths from <inline-formula> <tex-math notation="LaTeX">v </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> in any two trees are directed edge-disjoint and internally vertex-disjoint. The construction of independent spanning trees has many practical applications in reliable communication networks, such as fault-tolerant transmission and secure message distribution. A burnt pancake network <inline-formula> <tex-math notation="LaTeX">BP_{n} </tex-math></inline-formula> is a kind of Cayley graph, which has been proposed as the topology of an interconnection network. In this paper, we provide a two stages construction scheme that can be used to construct a maximal number of independent spanning trees on a burnt pancake network in <inline-formula> <tex-math notation="LaTeX">O(N\times n) </tex-math></inline-formula> time, where <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> is the number of nodes of <inline-formula> <tex-math notation="LaTeX">BP_{n} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the dimension of the network. Furthermore, we prove the correctness of our proposed algorithm in constructing independent spanning trees.]]></description><subject>Algorithms</subject><subject>burnt pancake network</subject><subject>Communication networks</subject><subject>Computer Science</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>fault-tolerant transmission</subject><subject>Graph theory</subject><subject>Independent spanning trees</subject><subject>interconnection networks</subject><subject>Networking and Internet Architecture</subject><subject>Program processors</subject><subject>Roads</subject><subject>secure message distribution</subject><subject>Topology</subject><subject>Trees (mathematics)</subject><subject>Vegetation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1P3DAQtSoqFS38Ai6ReuphF48_4vi4RFBWWmirXc6Wk4whS4hTO1vEv8dLECpzmLGe3nua8SPkDOgCgOrzZVlebjYLRhksOBWaafqFHDPI9ZxLnh_99_5GTmPc0VRFgqQ6Jn-2D5iVvo9j2Ndj6_vMu-xm343t0GG26hscMLV-zDaD7fu2v8-2ATFmiXmxDwn_bfvaPmJ2i-OzD4_xhHx1tot4-j5n5O7qcltez9e_fq7K5XpeC8HGuUDU1jVNk_ZooM45q6Sk1gnmHLVQq0qgbYApxqGptATKVZXbgikuVTqTz8hq8m283ZkhtE82vBhvW_MG-HBvbBjbukMDHApqleDaMaEtFloXFvPa5VXFFfDk9WPyerDdJ6vr5docMMqFAAXyHyTu94k7BP93j3E0O58-Ip1qmCg4k1KkMSN8YtXBxxjQfdgCNYfYzBSbOcRm3mNLqrNJ1SLih0JzECkx_grkWpFP</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yang, Yi-Cheng</creator><creator>Kao, Shih-Shun</creator><creator>Klasing, Ralf</creator><creator>Hsieh, Sun-Yuan</creator><creator>Chou, Hsin-Hung</creator><creator>Chang, Jou-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7695-3535</orcidid><orcidid>https://orcid.org/0000-0002-9542-7968</orcidid><orcidid>https://orcid.org/0000-0003-1627-9598</orcidid><orcidid>https://orcid.org/0000-0003-4746-3179</orcidid></search><sort><creationdate>2021</creationdate><title>The Construction of Multiple Independent Spanning Trees on Burnt Pancake Networks</title><author>Yang, Yi-Cheng ; Kao, Shih-Shun ; Klasing, Ralf ; Hsieh, Sun-Yuan ; Chou, Hsin-Hung ; Chang, Jou-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-4ee9afddd695d1c632b550af42ff0a1c7b4ead127231db951037b6a8273573043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>burnt pancake network</topic><topic>Communication networks</topic><topic>Computer Science</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>fault-tolerant transmission</topic><topic>Graph theory</topic><topic>Independent spanning trees</topic><topic>interconnection networks</topic><topic>Networking and Internet Architecture</topic><topic>Program processors</topic><topic>Roads</topic><topic>secure message distribution</topic><topic>Topology</topic><topic>Trees (mathematics)</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yi-Cheng</creatorcontrib><creatorcontrib>Kao, Shih-Shun</creatorcontrib><creatorcontrib>Klasing, Ralf</creatorcontrib><creatorcontrib>Hsieh, Sun-Yuan</creatorcontrib><creatorcontrib>Chou, Hsin-Hung</creatorcontrib><creatorcontrib>Chang, Jou-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yi-Cheng</au><au>Kao, Shih-Shun</au><au>Klasing, Ralf</au><au>Hsieh, Sun-Yuan</au><au>Chou, Hsin-Hung</au><au>Chang, Jou-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Construction of Multiple Independent Spanning Trees on Burnt Pancake Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>16679</spage><epage>16691</epage><pages>16679-16691</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[A set of the spanning trees in a graph <inline-formula> <tex-math notation="LaTeX">G </tex-math></inline-formula> is called independent spanning trees if they have a common root <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> and for each vertex <inline-formula> <tex-math notation="LaTeX">v\in V(G)\setminus \{r\} </tex-math></inline-formula>, the paths from <inline-formula> <tex-math notation="LaTeX">v </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> in any two trees are directed edge-disjoint and internally vertex-disjoint. The construction of independent spanning trees has many practical applications in reliable communication networks, such as fault-tolerant transmission and secure message distribution. A burnt pancake network <inline-formula> <tex-math notation="LaTeX">BP_{n} </tex-math></inline-formula> is a kind of Cayley graph, which has been proposed as the topology of an interconnection network. In this paper, we provide a two stages construction scheme that can be used to construct a maximal number of independent spanning trees on a burnt pancake network in <inline-formula> <tex-math notation="LaTeX">O(N\times n) </tex-math></inline-formula> time, where <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> is the number of nodes of <inline-formula> <tex-math notation="LaTeX">BP_{n} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the dimension of the network. Furthermore, we prove the correctness of our proposed algorithm in constructing independent spanning trees.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3049290</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7695-3535</orcidid><orcidid>https://orcid.org/0000-0002-9542-7968</orcidid><orcidid>https://orcid.org/0000-0003-1627-9598</orcidid><orcidid>https://orcid.org/0000-0003-4746-3179</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.16679-16691
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3049290
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
burnt pancake network
Communication networks
Computer Science
Fault tolerance
Fault tolerant systems
fault-tolerant transmission
Graph theory
Independent spanning trees
interconnection networks
Networking and Internet Architecture
Program processors
Roads
secure message distribution
Topology
Trees (mathematics)
Vegetation
title The Construction of Multiple Independent Spanning Trees on Burnt Pancake Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Construction%20of%20Multiple%20Independent%20Spanning%20Trees%20on%20Burnt%20Pancake%20Networks&rft.jtitle=IEEE%20access&rft.au=Yang,%20Yi-Cheng&rft.date=2021&rft.volume=9&rft.spage=16679&rft.epage=16691&rft.pages=16679-16691&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3049290&rft_dat=%3Cproquest_cross%3E2483255448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483255448&rft_id=info:pmid/&rft_ieee_id=9314008&rft_doaj_id=oai_doaj_org_article_13180a7439f249ae8998ae6cf6bb3713&rfr_iscdi=true