An Adaptive Motion Planning Technique for On-Road Autonomous Driving
This paper presents a hierarchical motion planning approach based on discrete optimization method. Well-coupled longitudinal and lateral planning strategies with adaptability features are applied for better performance of on-road autonomous driving with avoidance of both static and moving obstacles....
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.2655-2664 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2664 |
---|---|
container_issue | |
container_start_page | 2655 |
container_title | IEEE access |
container_volume | 9 |
creator | Jin, Xianjian Yan, Zeyuan Yin, Guodong Li, Shaohua Wei, Chongfeng |
description | This paper presents a hierarchical motion planning approach based on discrete optimization method. Well-coupled longitudinal and lateral planning strategies with adaptability features are applied for better performance of on-road autonomous driving with avoidance of both static and moving obstacles. In the path planning level, the proposed method starts with a speed profile designing for the determination of longitudinal horizon, then a set of candidate paths will be constructed with lateral offsets shifting from the base reference. Cost functions considering driving comfort and energy consumption are applied to evaluate each candidate path and the optimal one will be selected as tracking reference afterwards. Re-determination of longitudinal horizon in terms of relative distance between ego vehicle and surrounding obstacles, together with update of speed profile, will be triggered for re-planning if candidate paths ahead fail the safety checking. In the path tracking level, a pure-pursuit-based tracking controller is implemented to obtain the corresponding control sequence and further smooth the trajectory of autonomous vehicle. Simulation results demonstrate the effectiveness of the proposed method and indicate its better performance in extreme traffic scenarios compared to traditional discrete optimization methods, while balancing computational burden at the same time. |
doi_str_mv | 10.1109/ACCESS.2020.3047385 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3047385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9308913</ieee_id><doaj_id>oai_doaj_org_article_71c41937000e4f12969a882891e7fd0e</doaj_id><sourcerecordid>2475960019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-61eb50a58753a2e7c1d540ccefcd508bc7780f26b9f5063292eddd5d700761263</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKq_wMuC562TZPN1XOonVBSr55Am2ZpSk5rdCv57oyviXGYY5nln5kXoDMMMY1AX7Xx-tVzOCBCYUWgElewATQjmqqaM8sN_9TE67fsNlJClxcQEXbaxap3ZDeHDV_dpCClWj1sTY4jr6tnb1xje977qUq4eYv2UjKva_ZBiekv7vrrM4aMMnqCjzmx7f_qbp-jl-up5flsvHm7u5u2itg3IoebYrxgYJgWjhnhhsWMNWOs76xjIlRVCQkf4SnUMOCWKeOcccwJAcEw4naK7Udcls9G7HN5M_tTJBP3TSHmtTR6C3XotsG2wogUF33SYKK6MlEQq7EXnwBet81Frl1P5sB_0Ju1zLOdr0gimOEDhp4iOUzanvs---9uKQX-7r0f39bf7-tf9Qp2NVPDe_xGKQllP6Rfnun33</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475960019</pqid></control><display><type>article</type><title>An Adaptive Motion Planning Technique for On-Road Autonomous Driving</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jin, Xianjian ; Yan, Zeyuan ; Yin, Guodong ; Li, Shaohua ; Wei, Chongfeng</creator><creatorcontrib>Jin, Xianjian ; Yan, Zeyuan ; Yin, Guodong ; Li, Shaohua ; Wei, Chongfeng</creatorcontrib><description>This paper presents a hierarchical motion planning approach based on discrete optimization method. Well-coupled longitudinal and lateral planning strategies with adaptability features are applied for better performance of on-road autonomous driving with avoidance of both static and moving obstacles. In the path planning level, the proposed method starts with a speed profile designing for the determination of longitudinal horizon, then a set of candidate paths will be constructed with lateral offsets shifting from the base reference. Cost functions considering driving comfort and energy consumption are applied to evaluate each candidate path and the optimal one will be selected as tracking reference afterwards. Re-determination of longitudinal horizon in terms of relative distance between ego vehicle and surrounding obstacles, together with update of speed profile, will be triggered for re-planning if candidate paths ahead fail the safety checking. In the path tracking level, a pure-pursuit-based tracking controller is implemented to obtain the corresponding control sequence and further smooth the trajectory of autonomous vehicle. Simulation results demonstrate the effectiveness of the proposed method and indicate its better performance in extreme traffic scenarios compared to traditional discrete optimization methods, while balancing computational burden at the same time.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3047385</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Automobiles ; Autonomous driving ; Autonomous vehicles ; Cost function ; Energy consumption ; Horizon ; Motion planning ; Moving obstacles ; obstacle avoidance ; Offsets ; Optimization ; Optimization methods ; path generation ; Path tracking ; Planning ; Safety ; Tracking control ; Traffic speed ; Trajectory ; Trajectory planning</subject><ispartof>IEEE access, 2021, Vol.9, p.2655-2664</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-61eb50a58753a2e7c1d540ccefcd508bc7780f26b9f5063292eddd5d700761263</citedby><cites>FETCH-LOGICAL-c408t-61eb50a58753a2e7c1d540ccefcd508bc7780f26b9f5063292eddd5d700761263</cites><orcidid>0000-0003-0930-2382 ; 0000-0001-7385-0442 ; 0000-0002-8437-7598 ; 0000-0002-6952-5978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9308913$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Jin, Xianjian</creatorcontrib><creatorcontrib>Yan, Zeyuan</creatorcontrib><creatorcontrib>Yin, Guodong</creatorcontrib><creatorcontrib>Li, Shaohua</creatorcontrib><creatorcontrib>Wei, Chongfeng</creatorcontrib><title>An Adaptive Motion Planning Technique for On-Road Autonomous Driving</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a hierarchical motion planning approach based on discrete optimization method. Well-coupled longitudinal and lateral planning strategies with adaptability features are applied for better performance of on-road autonomous driving with avoidance of both static and moving obstacles. In the path planning level, the proposed method starts with a speed profile designing for the determination of longitudinal horizon, then a set of candidate paths will be constructed with lateral offsets shifting from the base reference. Cost functions considering driving comfort and energy consumption are applied to evaluate each candidate path and the optimal one will be selected as tracking reference afterwards. Re-determination of longitudinal horizon in terms of relative distance between ego vehicle and surrounding obstacles, together with update of speed profile, will be triggered for re-planning if candidate paths ahead fail the safety checking. In the path tracking level, a pure-pursuit-based tracking controller is implemented to obtain the corresponding control sequence and further smooth the trajectory of autonomous vehicle. Simulation results demonstrate the effectiveness of the proposed method and indicate its better performance in extreme traffic scenarios compared to traditional discrete optimization methods, while balancing computational burden at the same time.</description><subject>Acceleration</subject><subject>Automobiles</subject><subject>Autonomous driving</subject><subject>Autonomous vehicles</subject><subject>Cost function</subject><subject>Energy consumption</subject><subject>Horizon</subject><subject>Motion planning</subject><subject>Moving obstacles</subject><subject>obstacle avoidance</subject><subject>Offsets</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>path generation</subject><subject>Path tracking</subject><subject>Planning</subject><subject>Safety</subject><subject>Tracking control</subject><subject>Traffic speed</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWKq_wMuC562TZPN1XOonVBSr55Am2ZpSk5rdCv57oyviXGYY5nln5kXoDMMMY1AX7Xx-tVzOCBCYUWgElewATQjmqqaM8sN_9TE67fsNlJClxcQEXbaxap3ZDeHDV_dpCClWj1sTY4jr6tnb1xje977qUq4eYv2UjKva_ZBiekv7vrrM4aMMnqCjzmx7f_qbp-jl-up5flsvHm7u5u2itg3IoebYrxgYJgWjhnhhsWMNWOs76xjIlRVCQkf4SnUMOCWKeOcccwJAcEw4naK7Udcls9G7HN5M_tTJBP3TSHmtTR6C3XotsG2wogUF33SYKK6MlEQq7EXnwBet81Frl1P5sB_0Ju1zLOdr0gimOEDhp4iOUzanvs---9uKQX-7r0f39bf7-tf9Qp2NVPDe_xGKQllP6Rfnun33</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jin, Xianjian</creator><creator>Yan, Zeyuan</creator><creator>Yin, Guodong</creator><creator>Li, Shaohua</creator><creator>Wei, Chongfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0930-2382</orcidid><orcidid>https://orcid.org/0000-0001-7385-0442</orcidid><orcidid>https://orcid.org/0000-0002-8437-7598</orcidid><orcidid>https://orcid.org/0000-0002-6952-5978</orcidid></search><sort><creationdate>2021</creationdate><title>An Adaptive Motion Planning Technique for On-Road Autonomous Driving</title><author>Jin, Xianjian ; Yan, Zeyuan ; Yin, Guodong ; Li, Shaohua ; Wei, Chongfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-61eb50a58753a2e7c1d540ccefcd508bc7780f26b9f5063292eddd5d700761263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Automobiles</topic><topic>Autonomous driving</topic><topic>Autonomous vehicles</topic><topic>Cost function</topic><topic>Energy consumption</topic><topic>Horizon</topic><topic>Motion planning</topic><topic>Moving obstacles</topic><topic>obstacle avoidance</topic><topic>Offsets</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>path generation</topic><topic>Path tracking</topic><topic>Planning</topic><topic>Safety</topic><topic>Tracking control</topic><topic>Traffic speed</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xianjian</creatorcontrib><creatorcontrib>Yan, Zeyuan</creatorcontrib><creatorcontrib>Yin, Guodong</creatorcontrib><creatorcontrib>Li, Shaohua</creatorcontrib><creatorcontrib>Wei, Chongfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xianjian</au><au>Yan, Zeyuan</au><au>Yin, Guodong</au><au>Li, Shaohua</au><au>Wei, Chongfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Motion Planning Technique for On-Road Autonomous Driving</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>2655</spage><epage>2664</epage><pages>2655-2664</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a hierarchical motion planning approach based on discrete optimization method. Well-coupled longitudinal and lateral planning strategies with adaptability features are applied for better performance of on-road autonomous driving with avoidance of both static and moving obstacles. In the path planning level, the proposed method starts with a speed profile designing for the determination of longitudinal horizon, then a set of candidate paths will be constructed with lateral offsets shifting from the base reference. Cost functions considering driving comfort and energy consumption are applied to evaluate each candidate path and the optimal one will be selected as tracking reference afterwards. Re-determination of longitudinal horizon in terms of relative distance between ego vehicle and surrounding obstacles, together with update of speed profile, will be triggered for re-planning if candidate paths ahead fail the safety checking. In the path tracking level, a pure-pursuit-based tracking controller is implemented to obtain the corresponding control sequence and further smooth the trajectory of autonomous vehicle. Simulation results demonstrate the effectiveness of the proposed method and indicate its better performance in extreme traffic scenarios compared to traditional discrete optimization methods, while balancing computational burden at the same time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3047385</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0930-2382</orcidid><orcidid>https://orcid.org/0000-0001-7385-0442</orcidid><orcidid>https://orcid.org/0000-0002-8437-7598</orcidid><orcidid>https://orcid.org/0000-0002-6952-5978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.2655-2664 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3047385 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acceleration Automobiles Autonomous driving Autonomous vehicles Cost function Energy consumption Horizon Motion planning Moving obstacles obstacle avoidance Offsets Optimization Optimization methods path generation Path tracking Planning Safety Tracking control Traffic speed Trajectory Trajectory planning |
title | An Adaptive Motion Planning Technique for On-Road Autonomous Driving |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Motion%20Planning%20Technique%20for%20On-Road%20Autonomous%20Driving&rft.jtitle=IEEE%20access&rft.au=Jin,%20Xianjian&rft.date=2021&rft.volume=9&rft.spage=2655&rft.epage=2664&rft.pages=2655-2664&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3047385&rft_dat=%3Cproquest_cross%3E2475960019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475960019&rft_id=info:pmid/&rft_ieee_id=9308913&rft_doaj_id=oai_doaj_org_article_71c41937000e4f12969a882891e7fd0e&rfr_iscdi=true |