An Adaptive Motion Planning Technique for On-Road Autonomous Driving

This paper presents a hierarchical motion planning approach based on discrete optimization method. Well-coupled longitudinal and lateral planning strategies with adaptability features are applied for better performance of on-road autonomous driving with avoidance of both static and moving obstacles....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.2655-2664
Hauptverfasser: Jin, Xianjian, Yan, Zeyuan, Yin, Guodong, Li, Shaohua, Wei, Chongfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2664
container_issue
container_start_page 2655
container_title IEEE access
container_volume 9
creator Jin, Xianjian
Yan, Zeyuan
Yin, Guodong
Li, Shaohua
Wei, Chongfeng
description This paper presents a hierarchical motion planning approach based on discrete optimization method. Well-coupled longitudinal and lateral planning strategies with adaptability features are applied for better performance of on-road autonomous driving with avoidance of both static and moving obstacles. In the path planning level, the proposed method starts with a speed profile designing for the determination of longitudinal horizon, then a set of candidate paths will be constructed with lateral offsets shifting from the base reference. Cost functions considering driving comfort and energy consumption are applied to evaluate each candidate path and the optimal one will be selected as tracking reference afterwards. Re-determination of longitudinal horizon in terms of relative distance between ego vehicle and surrounding obstacles, together with update of speed profile, will be triggered for re-planning if candidate paths ahead fail the safety checking. In the path tracking level, a pure-pursuit-based tracking controller is implemented to obtain the corresponding control sequence and further smooth the trajectory of autonomous vehicle. Simulation results demonstrate the effectiveness of the proposed method and indicate its better performance in extreme traffic scenarios compared to traditional discrete optimization methods, while balancing computational burden at the same time.
doi_str_mv 10.1109/ACCESS.2020.3047385
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3047385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9308913</ieee_id><doaj_id>oai_doaj_org_article_71c41937000e4f12969a882891e7fd0e</doaj_id><sourcerecordid>2475960019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-61eb50a58753a2e7c1d540ccefcd508bc7780f26b9f5063292eddd5d700761263</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKq_wMuC562TZPN1XOonVBSr55Am2ZpSk5rdCv57oyviXGYY5nln5kXoDMMMY1AX7Xx-tVzOCBCYUWgElewATQjmqqaM8sN_9TE67fsNlJClxcQEXbaxap3ZDeHDV_dpCClWj1sTY4jr6tnb1xje977qUq4eYv2UjKva_ZBiekv7vrrM4aMMnqCjzmx7f_qbp-jl-up5flsvHm7u5u2itg3IoebYrxgYJgWjhnhhsWMNWOs76xjIlRVCQkf4SnUMOCWKeOcccwJAcEw4naK7Udcls9G7HN5M_tTJBP3TSHmtTR6C3XotsG2wogUF33SYKK6MlEQq7EXnwBet81Frl1P5sB_0Ju1zLOdr0gimOEDhp4iOUzanvs---9uKQX-7r0f39bf7-tf9Qp2NVPDe_xGKQllP6Rfnun33</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475960019</pqid></control><display><type>article</type><title>An Adaptive Motion Planning Technique for On-Road Autonomous Driving</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jin, Xianjian ; Yan, Zeyuan ; Yin, Guodong ; Li, Shaohua ; Wei, Chongfeng</creator><creatorcontrib>Jin, Xianjian ; Yan, Zeyuan ; Yin, Guodong ; Li, Shaohua ; Wei, Chongfeng</creatorcontrib><description>This paper presents a hierarchical motion planning approach based on discrete optimization method. Well-coupled longitudinal and lateral planning strategies with adaptability features are applied for better performance of on-road autonomous driving with avoidance of both static and moving obstacles. In the path planning level, the proposed method starts with a speed profile designing for the determination of longitudinal horizon, then a set of candidate paths will be constructed with lateral offsets shifting from the base reference. Cost functions considering driving comfort and energy consumption are applied to evaluate each candidate path and the optimal one will be selected as tracking reference afterwards. Re-determination of longitudinal horizon in terms of relative distance between ego vehicle and surrounding obstacles, together with update of speed profile, will be triggered for re-planning if candidate paths ahead fail the safety checking. In the path tracking level, a pure-pursuit-based tracking controller is implemented to obtain the corresponding control sequence and further smooth the trajectory of autonomous vehicle. Simulation results demonstrate the effectiveness of the proposed method and indicate its better performance in extreme traffic scenarios compared to traditional discrete optimization methods, while balancing computational burden at the same time.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3047385</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Automobiles ; Autonomous driving ; Autonomous vehicles ; Cost function ; Energy consumption ; Horizon ; Motion planning ; Moving obstacles ; obstacle avoidance ; Offsets ; Optimization ; Optimization methods ; path generation ; Path tracking ; Planning ; Safety ; Tracking control ; Traffic speed ; Trajectory ; Trajectory planning</subject><ispartof>IEEE access, 2021, Vol.9, p.2655-2664</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-61eb50a58753a2e7c1d540ccefcd508bc7780f26b9f5063292eddd5d700761263</citedby><cites>FETCH-LOGICAL-c408t-61eb50a58753a2e7c1d540ccefcd508bc7780f26b9f5063292eddd5d700761263</cites><orcidid>0000-0003-0930-2382 ; 0000-0001-7385-0442 ; 0000-0002-8437-7598 ; 0000-0002-6952-5978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9308913$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Jin, Xianjian</creatorcontrib><creatorcontrib>Yan, Zeyuan</creatorcontrib><creatorcontrib>Yin, Guodong</creatorcontrib><creatorcontrib>Li, Shaohua</creatorcontrib><creatorcontrib>Wei, Chongfeng</creatorcontrib><title>An Adaptive Motion Planning Technique for On-Road Autonomous Driving</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a hierarchical motion planning approach based on discrete optimization method. Well-coupled longitudinal and lateral planning strategies with adaptability features are applied for better performance of on-road autonomous driving with avoidance of both static and moving obstacles. In the path planning level, the proposed method starts with a speed profile designing for the determination of longitudinal horizon, then a set of candidate paths will be constructed with lateral offsets shifting from the base reference. Cost functions considering driving comfort and energy consumption are applied to evaluate each candidate path and the optimal one will be selected as tracking reference afterwards. Re-determination of longitudinal horizon in terms of relative distance between ego vehicle and surrounding obstacles, together with update of speed profile, will be triggered for re-planning if candidate paths ahead fail the safety checking. In the path tracking level, a pure-pursuit-based tracking controller is implemented to obtain the corresponding control sequence and further smooth the trajectory of autonomous vehicle. Simulation results demonstrate the effectiveness of the proposed method and indicate its better performance in extreme traffic scenarios compared to traditional discrete optimization methods, while balancing computational burden at the same time.</description><subject>Acceleration</subject><subject>Automobiles</subject><subject>Autonomous driving</subject><subject>Autonomous vehicles</subject><subject>Cost function</subject><subject>Energy consumption</subject><subject>Horizon</subject><subject>Motion planning</subject><subject>Moving obstacles</subject><subject>obstacle avoidance</subject><subject>Offsets</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>path generation</subject><subject>Path tracking</subject><subject>Planning</subject><subject>Safety</subject><subject>Tracking control</subject><subject>Traffic speed</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWKq_wMuC562TZPN1XOonVBSr55Am2ZpSk5rdCv57oyviXGYY5nln5kXoDMMMY1AX7Xx-tVzOCBCYUWgElewATQjmqqaM8sN_9TE67fsNlJClxcQEXbaxap3ZDeHDV_dpCClWj1sTY4jr6tnb1xje977qUq4eYv2UjKva_ZBiekv7vrrM4aMMnqCjzmx7f_qbp-jl-up5flsvHm7u5u2itg3IoebYrxgYJgWjhnhhsWMNWOs76xjIlRVCQkf4SnUMOCWKeOcccwJAcEw4naK7Udcls9G7HN5M_tTJBP3TSHmtTR6C3XotsG2wogUF33SYKK6MlEQq7EXnwBet81Frl1P5sB_0Ju1zLOdr0gimOEDhp4iOUzanvs---9uKQX-7r0f39bf7-tf9Qp2NVPDe_xGKQllP6Rfnun33</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jin, Xianjian</creator><creator>Yan, Zeyuan</creator><creator>Yin, Guodong</creator><creator>Li, Shaohua</creator><creator>Wei, Chongfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0930-2382</orcidid><orcidid>https://orcid.org/0000-0001-7385-0442</orcidid><orcidid>https://orcid.org/0000-0002-8437-7598</orcidid><orcidid>https://orcid.org/0000-0002-6952-5978</orcidid></search><sort><creationdate>2021</creationdate><title>An Adaptive Motion Planning Technique for On-Road Autonomous Driving</title><author>Jin, Xianjian ; Yan, Zeyuan ; Yin, Guodong ; Li, Shaohua ; Wei, Chongfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-61eb50a58753a2e7c1d540ccefcd508bc7780f26b9f5063292eddd5d700761263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Automobiles</topic><topic>Autonomous driving</topic><topic>Autonomous vehicles</topic><topic>Cost function</topic><topic>Energy consumption</topic><topic>Horizon</topic><topic>Motion planning</topic><topic>Moving obstacles</topic><topic>obstacle avoidance</topic><topic>Offsets</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>path generation</topic><topic>Path tracking</topic><topic>Planning</topic><topic>Safety</topic><topic>Tracking control</topic><topic>Traffic speed</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xianjian</creatorcontrib><creatorcontrib>Yan, Zeyuan</creatorcontrib><creatorcontrib>Yin, Guodong</creatorcontrib><creatorcontrib>Li, Shaohua</creatorcontrib><creatorcontrib>Wei, Chongfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xianjian</au><au>Yan, Zeyuan</au><au>Yin, Guodong</au><au>Li, Shaohua</au><au>Wei, Chongfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Motion Planning Technique for On-Road Autonomous Driving</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>2655</spage><epage>2664</epage><pages>2655-2664</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a hierarchical motion planning approach based on discrete optimization method. Well-coupled longitudinal and lateral planning strategies with adaptability features are applied for better performance of on-road autonomous driving with avoidance of both static and moving obstacles. In the path planning level, the proposed method starts with a speed profile designing for the determination of longitudinal horizon, then a set of candidate paths will be constructed with lateral offsets shifting from the base reference. Cost functions considering driving comfort and energy consumption are applied to evaluate each candidate path and the optimal one will be selected as tracking reference afterwards. Re-determination of longitudinal horizon in terms of relative distance between ego vehicle and surrounding obstacles, together with update of speed profile, will be triggered for re-planning if candidate paths ahead fail the safety checking. In the path tracking level, a pure-pursuit-based tracking controller is implemented to obtain the corresponding control sequence and further smooth the trajectory of autonomous vehicle. Simulation results demonstrate the effectiveness of the proposed method and indicate its better performance in extreme traffic scenarios compared to traditional discrete optimization methods, while balancing computational burden at the same time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3047385</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0930-2382</orcidid><orcidid>https://orcid.org/0000-0001-7385-0442</orcidid><orcidid>https://orcid.org/0000-0002-8437-7598</orcidid><orcidid>https://orcid.org/0000-0002-6952-5978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.2655-2664
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3047385
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acceleration
Automobiles
Autonomous driving
Autonomous vehicles
Cost function
Energy consumption
Horizon
Motion planning
Moving obstacles
obstacle avoidance
Offsets
Optimization
Optimization methods
path generation
Path tracking
Planning
Safety
Tracking control
Traffic speed
Trajectory
Trajectory planning
title An Adaptive Motion Planning Technique for On-Road Autonomous Driving
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Motion%20Planning%20Technique%20for%20On-Road%20Autonomous%20Driving&rft.jtitle=IEEE%20access&rft.au=Jin,%20Xianjian&rft.date=2021&rft.volume=9&rft.spage=2655&rft.epage=2664&rft.pages=2655-2664&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3047385&rft_dat=%3Cproquest_cross%3E2475960019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475960019&rft_id=info:pmid/&rft_ieee_id=9308913&rft_doaj_id=oai_doaj_org_article_71c41937000e4f12969a882891e7fd0e&rfr_iscdi=true