An Efficient Voxel-Based Segmentation Algorithm Based on Hierarchical Clustering to Extract LIDAR Power Equipment Data in Transformer Substations

Light detection and ranging (LIDAR) scanning is a common method of substation scene modeling that extracts point clouds of electrical equipment from the point cloud scene of a substation. The extraction effect is limited by uncertainty regarding the noise level, nonuniform point cloud density, and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.227482-227496
Hauptverfasser: Guo, Jianlong, Feng, Weixia, Xue, Jiang, Xiong, Shan, Hao, Tengfei, Li, Ruiheng, Mao, Huben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227496
container_issue
container_start_page 227482
container_title IEEE access
container_volume 8
creator Guo, Jianlong
Feng, Weixia
Xue, Jiang
Xiong, Shan
Hao, Tengfei
Li, Ruiheng
Mao, Huben
description Light detection and ranging (LIDAR) scanning is a common method of substation scene modeling that extracts point clouds of electrical equipment from the point cloud scene of a substation. The extraction effect is limited by uncertainty regarding the noise level, nonuniform point cloud density, and the computational complexity. In this paper, we propose a point cloud extraction solution for electrical equipment models. First, a statistical analysis of substation ground elevation is performed to obtain the point clouds of devices at the feature height and remove large numbers of redundant underground point clouds. Second, based on the statistically derived power equipment feature heights, the point cloud data are sliced according to the featured elevation intervals. Based on voxelization, the point cloud slices are then clustered using horizontal hierarchical clustering. The clustering results at different elevation intervals are then reclustered using vertical hierarchical clustering. Finally, we use filters combined with the DBSCAN algorithm to perform fine segmentation on the point cloud data. The results show that our slice clustering approach reduces the computational burden involved in point cloud processing, and the comprehensive clustering strategy ensures the accuracy of the clustering results.
doi_str_mv 10.1109/ACCESS.2020.3046313
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3046313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9301293</ieee_id><doaj_id>oai_doaj_org_article_0cae7f71ae6e4abc98698fc3d964dbfa</doaj_id><sourcerecordid>2474859928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-9170cb6785d655ec99a1455791f3ea64052db6dcca2429474f16f307091af3ed3</originalsourceid><addsrcrecordid>eNqNUctu3CAUtapWapTmC7JB6rLyFAzGZuk6k2akkVJ10m7RNYYJI4-ZAFbSz-gfF8dR2mXZgM49D-Bk2SXBK0Kw-Ny07Xq3WxW4wCuKGaeEvsnOCsJFTkvK3_5zfp9dhHDAadUJKquz7HczorUxVlk9RvTTPekh_wJB92in98eEQbRuRM2wd97G-yNahgm6sdqDV_dWwYDaYQpRezvuUXRo_RQ9qIi2m6vmO_rmHrVH64fJnmZDdAURkB3RnYcxGOePabqburBEhQ_ZOwND0Bcv-3n243p9197k29uvm7bZ5opVdcwFqbDqeFWXPS9LrYQAwsqyEsRQDZzhsug73isFBSsEq5gh3FBcYUEgMXp6nm0W397BQZ68PYL_JR1Y-Qw4v5fgo1WDlliBrkxFQHPNoFOi5qI2ivaCs74zkLw-Ll4n7x4mHaI8uMmP6fqySNF1KURRJxZdWMq7ELw2r6kEy7lKuVQp5yrlS5VJ9WlRPerOmTAXpfSrMlXJcXo3q-ZWSWLX_89u7fLnrZvGmKSXi9Rq_VciKCaFoPQPo6u8Vg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474859928</pqid></control><display><type>article</type><title>An Efficient Voxel-Based Segmentation Algorithm Based on Hierarchical Clustering to Extract LIDAR Power Equipment Data in Transformer Substations</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Guo, Jianlong ; Feng, Weixia ; Xue, Jiang ; Xiong, Shan ; Hao, Tengfei ; Li, Ruiheng ; Mao, Huben</creator><creatorcontrib>Guo, Jianlong ; Feng, Weixia ; Xue, Jiang ; Xiong, Shan ; Hao, Tengfei ; Li, Ruiheng ; Mao, Huben</creatorcontrib><description>Light detection and ranging (LIDAR) scanning is a common method of substation scene modeling that extracts point clouds of electrical equipment from the point cloud scene of a substation. The extraction effect is limited by uncertainty regarding the noise level, nonuniform point cloud density, and the computational complexity. In this paper, we propose a point cloud extraction solution for electrical equipment models. First, a statistical analysis of substation ground elevation is performed to obtain the point clouds of devices at the feature height and remove large numbers of redundant underground point clouds. Second, based on the statistically derived power equipment feature heights, the point cloud data are sliced according to the featured elevation intervals. Based on voxelization, the point cloud slices are then clustered using horizontal hierarchical clustering. The clustering results at different elevation intervals are then reclustered using vertical hierarchical clustering. Finally, we use filters combined with the DBSCAN algorithm to perform fine segmentation on the point cloud data. The results show that our slice clustering approach reduces the computational burden involved in point cloud processing, and the comprehensive clustering strategy ensures the accuracy of the clustering results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3046313</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Clustering algorithms ; Clustering methods ; Computer Science ; Computer Science, Information Systems ; Electric equipment ; Elevation ; Engineering ; Engineering, Electrical &amp; Electronic ; Image segmentation ; Intervals ; Lidar ; Noise level ; Noise levels ; Noise measurement ; point cloud segmentation ; Science &amp; Technology ; smart grid ; Solid modeling ; Statistical analysis ; substation modeling ; Substations ; Technology ; Telecommunications ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE access, 2020, Vol.8, p.227482-227496</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000604554700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-9170cb6785d655ec99a1455791f3ea64052db6dcca2429474f16f307091af3ed3</citedby><cites>FETCH-LOGICAL-c478t-9170cb6785d655ec99a1455791f3ea64052db6dcca2429474f16f307091af3ed3</cites><orcidid>0000-0003-0057-2001 ; 0000-0002-8528-3809 ; 0000-0003-4556-5745 ; 0000-0003-1312-9033 ; 0000-0001-6260-4131 ; 0000-0002-2050-0649 ; 0000-0001-9208-4341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9301293$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27638,27928,27929,27930,28253,54938</link.rule.ids></links><search><creatorcontrib>Guo, Jianlong</creatorcontrib><creatorcontrib>Feng, Weixia</creatorcontrib><creatorcontrib>Xue, Jiang</creatorcontrib><creatorcontrib>Xiong, Shan</creatorcontrib><creatorcontrib>Hao, Tengfei</creatorcontrib><creatorcontrib>Li, Ruiheng</creatorcontrib><creatorcontrib>Mao, Huben</creatorcontrib><title>An Efficient Voxel-Based Segmentation Algorithm Based on Hierarchical Clustering to Extract LIDAR Power Equipment Data in Transformer Substations</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>Light detection and ranging (LIDAR) scanning is a common method of substation scene modeling that extracts point clouds of electrical equipment from the point cloud scene of a substation. The extraction effect is limited by uncertainty regarding the noise level, nonuniform point cloud density, and the computational complexity. In this paper, we propose a point cloud extraction solution for electrical equipment models. First, a statistical analysis of substation ground elevation is performed to obtain the point clouds of devices at the feature height and remove large numbers of redundant underground point clouds. Second, based on the statistically derived power equipment feature heights, the point cloud data are sliced according to the featured elevation intervals. Based on voxelization, the point cloud slices are then clustered using horizontal hierarchical clustering. The clustering results at different elevation intervals are then reclustered using vertical hierarchical clustering. Finally, we use filters combined with the DBSCAN algorithm to perform fine segmentation on the point cloud data. The results show that our slice clustering approach reduces the computational burden involved in point cloud processing, and the comprehensive clustering strategy ensures the accuracy of the clustering results.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Electric equipment</subject><subject>Elevation</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Image segmentation</subject><subject>Intervals</subject><subject>Lidar</subject><subject>Noise level</subject><subject>Noise levels</subject><subject>Noise measurement</subject><subject>point cloud segmentation</subject><subject>Science &amp; Technology</subject><subject>smart grid</subject><subject>Solid modeling</subject><subject>Statistical analysis</subject><subject>substation modeling</subject><subject>Substations</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUctu3CAUtapWapTmC7JB6rLyFAzGZuk6k2akkVJ10m7RNYYJI4-ZAFbSz-gfF8dR2mXZgM49D-Bk2SXBK0Kw-Ny07Xq3WxW4wCuKGaeEvsnOCsJFTkvK3_5zfp9dhHDAadUJKquz7HczorUxVlk9RvTTPekh_wJB92in98eEQbRuRM2wd97G-yNahgm6sdqDV_dWwYDaYQpRezvuUXRo_RQ9qIi2m6vmO_rmHrVH64fJnmZDdAURkB3RnYcxGOePabqburBEhQ_ZOwND0Bcv-3n243p9197k29uvm7bZ5opVdcwFqbDqeFWXPS9LrYQAwsqyEsRQDZzhsug73isFBSsEq5gh3FBcYUEgMXp6nm0W397BQZ68PYL_JR1Y-Qw4v5fgo1WDlliBrkxFQHPNoFOi5qI2ivaCs74zkLw-Ll4n7x4mHaI8uMmP6fqySNF1KURRJxZdWMq7ELw2r6kEy7lKuVQp5yrlS5VJ9WlRPerOmTAXpfSrMlXJcXo3q-ZWSWLX_89u7fLnrZvGmKSXi9Rq_VciKCaFoPQPo6u8Vg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Guo, Jianlong</creator><creator>Feng, Weixia</creator><creator>Xue, Jiang</creator><creator>Xiong, Shan</creator><creator>Hao, Tengfei</creator><creator>Li, Ruiheng</creator><creator>Mao, Huben</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0057-2001</orcidid><orcidid>https://orcid.org/0000-0002-8528-3809</orcidid><orcidid>https://orcid.org/0000-0003-4556-5745</orcidid><orcidid>https://orcid.org/0000-0003-1312-9033</orcidid><orcidid>https://orcid.org/0000-0001-6260-4131</orcidid><orcidid>https://orcid.org/0000-0002-2050-0649</orcidid><orcidid>https://orcid.org/0000-0001-9208-4341</orcidid></search><sort><creationdate>2020</creationdate><title>An Efficient Voxel-Based Segmentation Algorithm Based on Hierarchical Clustering to Extract LIDAR Power Equipment Data in Transformer Substations</title><author>Guo, Jianlong ; Feng, Weixia ; Xue, Jiang ; Xiong, Shan ; Hao, Tengfei ; Li, Ruiheng ; Mao, Huben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-9170cb6785d655ec99a1455791f3ea64052db6dcca2429474f16f307091af3ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Electric equipment</topic><topic>Elevation</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Image segmentation</topic><topic>Intervals</topic><topic>Lidar</topic><topic>Noise level</topic><topic>Noise levels</topic><topic>Noise measurement</topic><topic>point cloud segmentation</topic><topic>Science &amp; Technology</topic><topic>smart grid</topic><topic>Solid modeling</topic><topic>Statistical analysis</topic><topic>substation modeling</topic><topic>Substations</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jianlong</creatorcontrib><creatorcontrib>Feng, Weixia</creatorcontrib><creatorcontrib>Xue, Jiang</creatorcontrib><creatorcontrib>Xiong, Shan</creatorcontrib><creatorcontrib>Hao, Tengfei</creatorcontrib><creatorcontrib>Li, Ruiheng</creatorcontrib><creatorcontrib>Mao, Huben</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jianlong</au><au>Feng, Weixia</au><au>Xue, Jiang</au><au>Xiong, Shan</au><au>Hao, Tengfei</au><au>Li, Ruiheng</au><au>Mao, Huben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Voxel-Based Segmentation Algorithm Based on Hierarchical Clustering to Extract LIDAR Power Equipment Data in Transformer Substations</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>227482</spage><epage>227496</epage><pages>227482-227496</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Light detection and ranging (LIDAR) scanning is a common method of substation scene modeling that extracts point clouds of electrical equipment from the point cloud scene of a substation. The extraction effect is limited by uncertainty regarding the noise level, nonuniform point cloud density, and the computational complexity. In this paper, we propose a point cloud extraction solution for electrical equipment models. First, a statistical analysis of substation ground elevation is performed to obtain the point clouds of devices at the feature height and remove large numbers of redundant underground point clouds. Second, based on the statistically derived power equipment feature heights, the point cloud data are sliced according to the featured elevation intervals. Based on voxelization, the point cloud slices are then clustered using horizontal hierarchical clustering. The clustering results at different elevation intervals are then reclustered using vertical hierarchical clustering. Finally, we use filters combined with the DBSCAN algorithm to perform fine segmentation on the point cloud data. The results show that our slice clustering approach reduces the computational burden involved in point cloud processing, and the comprehensive clustering strategy ensures the accuracy of the clustering results.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3046313</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0057-2001</orcidid><orcidid>https://orcid.org/0000-0002-8528-3809</orcidid><orcidid>https://orcid.org/0000-0003-4556-5745</orcidid><orcidid>https://orcid.org/0000-0003-1312-9033</orcidid><orcidid>https://orcid.org/0000-0001-6260-4131</orcidid><orcidid>https://orcid.org/0000-0002-2050-0649</orcidid><orcidid>https://orcid.org/0000-0001-9208-4341</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.227482-227496
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3046313
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Algorithms
Cluster analysis
Clustering
Clustering algorithms
Clustering methods
Computer Science
Computer Science, Information Systems
Electric equipment
Elevation
Engineering
Engineering, Electrical & Electronic
Image segmentation
Intervals
Lidar
Noise level
Noise levels
Noise measurement
point cloud segmentation
Science & Technology
smart grid
Solid modeling
Statistical analysis
substation modeling
Substations
Technology
Telecommunications
Three dimensional models
Three-dimensional displays
title An Efficient Voxel-Based Segmentation Algorithm Based on Hierarchical Clustering to Extract LIDAR Power Equipment Data in Transformer Substations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Voxel-Based%20Segmentation%20Algorithm%20Based%20on%20Hierarchical%20Clustering%20to%20Extract%20LIDAR%20Power%20Equipment%20Data%20in%20Transformer%20Substations&rft.jtitle=IEEE%20access&rft.au=Guo,%20Jianlong&rft.date=2020&rft.volume=8&rft.spage=227482&rft.epage=227496&rft.pages=227482-227496&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3046313&rft_dat=%3Cproquest_cross%3E2474859928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474859928&rft_id=info:pmid/&rft_ieee_id=9301293&rft_doaj_id=oai_doaj_org_article_0cae7f71ae6e4abc98698fc3d964dbfa&rfr_iscdi=true