An Efficient Voxel-Based Segmentation Algorithm Based on Hierarchical Clustering to Extract LIDAR Power Equipment Data in Transformer Substations
Light detection and ranging (LIDAR) scanning is a common method of substation scene modeling that extracts point clouds of electrical equipment from the point cloud scene of a substation. The extraction effect is limited by uncertainty regarding the noise level, nonuniform point cloud density, and t...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.227482-227496 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227496 |
---|---|
container_issue | |
container_start_page | 227482 |
container_title | IEEE access |
container_volume | 8 |
creator | Guo, Jianlong Feng, Weixia Xue, Jiang Xiong, Shan Hao, Tengfei Li, Ruiheng Mao, Huben |
description | Light detection and ranging (LIDAR) scanning is a common method of substation scene modeling that extracts point clouds of electrical equipment from the point cloud scene of a substation. The extraction effect is limited by uncertainty regarding the noise level, nonuniform point cloud density, and the computational complexity. In this paper, we propose a point cloud extraction solution for electrical equipment models. First, a statistical analysis of substation ground elevation is performed to obtain the point clouds of devices at the feature height and remove large numbers of redundant underground point clouds. Second, based on the statistically derived power equipment feature heights, the point cloud data are sliced according to the featured elevation intervals. Based on voxelization, the point cloud slices are then clustered using horizontal hierarchical clustering. The clustering results at different elevation intervals are then reclustered using vertical hierarchical clustering. Finally, we use filters combined with the DBSCAN algorithm to perform fine segmentation on the point cloud data. The results show that our slice clustering approach reduces the computational burden involved in point cloud processing, and the comprehensive clustering strategy ensures the accuracy of the clustering results. |
doi_str_mv | 10.1109/ACCESS.2020.3046313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3046313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9301293</ieee_id><doaj_id>oai_doaj_org_article_0cae7f71ae6e4abc98698fc3d964dbfa</doaj_id><sourcerecordid>2474859928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-9170cb6785d655ec99a1455791f3ea64052db6dcca2429474f16f307091af3ed3</originalsourceid><addsrcrecordid>eNqNUctu3CAUtapWapTmC7JB6rLyFAzGZuk6k2akkVJ10m7RNYYJI4-ZAFbSz-gfF8dR2mXZgM49D-Bk2SXBK0Kw-Ny07Xq3WxW4wCuKGaeEvsnOCsJFTkvK3_5zfp9dhHDAadUJKquz7HczorUxVlk9RvTTPekh_wJB92in98eEQbRuRM2wd97G-yNahgm6sdqDV_dWwYDaYQpRezvuUXRo_RQ9qIi2m6vmO_rmHrVH64fJnmZDdAURkB3RnYcxGOePabqburBEhQ_ZOwND0Bcv-3n243p9197k29uvm7bZ5opVdcwFqbDqeFWXPS9LrYQAwsqyEsRQDZzhsug73isFBSsEq5gh3FBcYUEgMXp6nm0W397BQZ68PYL_JR1Y-Qw4v5fgo1WDlliBrkxFQHPNoFOi5qI2ivaCs74zkLw-Ll4n7x4mHaI8uMmP6fqySNF1KURRJxZdWMq7ELw2r6kEy7lKuVQp5yrlS5VJ9WlRPerOmTAXpfSrMlXJcXo3q-ZWSWLX_89u7fLnrZvGmKSXi9Rq_VciKCaFoPQPo6u8Vg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474859928</pqid></control><display><type>article</type><title>An Efficient Voxel-Based Segmentation Algorithm Based on Hierarchical Clustering to Extract LIDAR Power Equipment Data in Transformer Substations</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Guo, Jianlong ; Feng, Weixia ; Xue, Jiang ; Xiong, Shan ; Hao, Tengfei ; Li, Ruiheng ; Mao, Huben</creator><creatorcontrib>Guo, Jianlong ; Feng, Weixia ; Xue, Jiang ; Xiong, Shan ; Hao, Tengfei ; Li, Ruiheng ; Mao, Huben</creatorcontrib><description>Light detection and ranging (LIDAR) scanning is a common method of substation scene modeling that extracts point clouds of electrical equipment from the point cloud scene of a substation. The extraction effect is limited by uncertainty regarding the noise level, nonuniform point cloud density, and the computational complexity. In this paper, we propose a point cloud extraction solution for electrical equipment models. First, a statistical analysis of substation ground elevation is performed to obtain the point clouds of devices at the feature height and remove large numbers of redundant underground point clouds. Second, based on the statistically derived power equipment feature heights, the point cloud data are sliced according to the featured elevation intervals. Based on voxelization, the point cloud slices are then clustered using horizontal hierarchical clustering. The clustering results at different elevation intervals are then reclustered using vertical hierarchical clustering. Finally, we use filters combined with the DBSCAN algorithm to perform fine segmentation on the point cloud data. The results show that our slice clustering approach reduces the computational burden involved in point cloud processing, and the comprehensive clustering strategy ensures the accuracy of the clustering results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3046313</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Clustering algorithms ; Clustering methods ; Computer Science ; Computer Science, Information Systems ; Electric equipment ; Elevation ; Engineering ; Engineering, Electrical & Electronic ; Image segmentation ; Intervals ; Lidar ; Noise level ; Noise levels ; Noise measurement ; point cloud segmentation ; Science & Technology ; smart grid ; Solid modeling ; Statistical analysis ; substation modeling ; Substations ; Technology ; Telecommunications ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE access, 2020, Vol.8, p.227482-227496</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000604554700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-9170cb6785d655ec99a1455791f3ea64052db6dcca2429474f16f307091af3ed3</citedby><cites>FETCH-LOGICAL-c478t-9170cb6785d655ec99a1455791f3ea64052db6dcca2429474f16f307091af3ed3</cites><orcidid>0000-0003-0057-2001 ; 0000-0002-8528-3809 ; 0000-0003-4556-5745 ; 0000-0003-1312-9033 ; 0000-0001-6260-4131 ; 0000-0002-2050-0649 ; 0000-0001-9208-4341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9301293$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27638,27928,27929,27930,28253,54938</link.rule.ids></links><search><creatorcontrib>Guo, Jianlong</creatorcontrib><creatorcontrib>Feng, Weixia</creatorcontrib><creatorcontrib>Xue, Jiang</creatorcontrib><creatorcontrib>Xiong, Shan</creatorcontrib><creatorcontrib>Hao, Tengfei</creatorcontrib><creatorcontrib>Li, Ruiheng</creatorcontrib><creatorcontrib>Mao, Huben</creatorcontrib><title>An Efficient Voxel-Based Segmentation Algorithm Based on Hierarchical Clustering to Extract LIDAR Power Equipment Data in Transformer Substations</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>Light detection and ranging (LIDAR) scanning is a common method of substation scene modeling that extracts point clouds of electrical equipment from the point cloud scene of a substation. The extraction effect is limited by uncertainty regarding the noise level, nonuniform point cloud density, and the computational complexity. In this paper, we propose a point cloud extraction solution for electrical equipment models. First, a statistical analysis of substation ground elevation is performed to obtain the point clouds of devices at the feature height and remove large numbers of redundant underground point clouds. Second, based on the statistically derived power equipment feature heights, the point cloud data are sliced according to the featured elevation intervals. Based on voxelization, the point cloud slices are then clustered using horizontal hierarchical clustering. The clustering results at different elevation intervals are then reclustered using vertical hierarchical clustering. Finally, we use filters combined with the DBSCAN algorithm to perform fine segmentation on the point cloud data. The results show that our slice clustering approach reduces the computational burden involved in point cloud processing, and the comprehensive clustering strategy ensures the accuracy of the clustering results.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Electric equipment</subject><subject>Elevation</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Image segmentation</subject><subject>Intervals</subject><subject>Lidar</subject><subject>Noise level</subject><subject>Noise levels</subject><subject>Noise measurement</subject><subject>point cloud segmentation</subject><subject>Science & Technology</subject><subject>smart grid</subject><subject>Solid modeling</subject><subject>Statistical analysis</subject><subject>substation modeling</subject><subject>Substations</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUctu3CAUtapWapTmC7JB6rLyFAzGZuk6k2akkVJ10m7RNYYJI4-ZAFbSz-gfF8dR2mXZgM49D-Bk2SXBK0Kw-Ny07Xq3WxW4wCuKGaeEvsnOCsJFTkvK3_5zfp9dhHDAadUJKquz7HczorUxVlk9RvTTPekh_wJB92in98eEQbRuRM2wd97G-yNahgm6sdqDV_dWwYDaYQpRezvuUXRo_RQ9qIi2m6vmO_rmHrVH64fJnmZDdAURkB3RnYcxGOePabqburBEhQ_ZOwND0Bcv-3n243p9197k29uvm7bZ5opVdcwFqbDqeFWXPS9LrYQAwsqyEsRQDZzhsug73isFBSsEq5gh3FBcYUEgMXp6nm0W397BQZ68PYL_JR1Y-Qw4v5fgo1WDlliBrkxFQHPNoFOi5qI2ivaCs74zkLw-Ll4n7x4mHaI8uMmP6fqySNF1KURRJxZdWMq7ELw2r6kEy7lKuVQp5yrlS5VJ9WlRPerOmTAXpfSrMlXJcXo3q-ZWSWLX_89u7fLnrZvGmKSXi9Rq_VciKCaFoPQPo6u8Vg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Guo, Jianlong</creator><creator>Feng, Weixia</creator><creator>Xue, Jiang</creator><creator>Xiong, Shan</creator><creator>Hao, Tengfei</creator><creator>Li, Ruiheng</creator><creator>Mao, Huben</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0057-2001</orcidid><orcidid>https://orcid.org/0000-0002-8528-3809</orcidid><orcidid>https://orcid.org/0000-0003-4556-5745</orcidid><orcidid>https://orcid.org/0000-0003-1312-9033</orcidid><orcidid>https://orcid.org/0000-0001-6260-4131</orcidid><orcidid>https://orcid.org/0000-0002-2050-0649</orcidid><orcidid>https://orcid.org/0000-0001-9208-4341</orcidid></search><sort><creationdate>2020</creationdate><title>An Efficient Voxel-Based Segmentation Algorithm Based on Hierarchical Clustering to Extract LIDAR Power Equipment Data in Transformer Substations</title><author>Guo, Jianlong ; Feng, Weixia ; Xue, Jiang ; Xiong, Shan ; Hao, Tengfei ; Li, Ruiheng ; Mao, Huben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-9170cb6785d655ec99a1455791f3ea64052db6dcca2429474f16f307091af3ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Electric equipment</topic><topic>Elevation</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Image segmentation</topic><topic>Intervals</topic><topic>Lidar</topic><topic>Noise level</topic><topic>Noise levels</topic><topic>Noise measurement</topic><topic>point cloud segmentation</topic><topic>Science & Technology</topic><topic>smart grid</topic><topic>Solid modeling</topic><topic>Statistical analysis</topic><topic>substation modeling</topic><topic>Substations</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jianlong</creatorcontrib><creatorcontrib>Feng, Weixia</creatorcontrib><creatorcontrib>Xue, Jiang</creatorcontrib><creatorcontrib>Xiong, Shan</creatorcontrib><creatorcontrib>Hao, Tengfei</creatorcontrib><creatorcontrib>Li, Ruiheng</creatorcontrib><creatorcontrib>Mao, Huben</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jianlong</au><au>Feng, Weixia</au><au>Xue, Jiang</au><au>Xiong, Shan</au><au>Hao, Tengfei</au><au>Li, Ruiheng</au><au>Mao, Huben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Voxel-Based Segmentation Algorithm Based on Hierarchical Clustering to Extract LIDAR Power Equipment Data in Transformer Substations</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>227482</spage><epage>227496</epage><pages>227482-227496</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Light detection and ranging (LIDAR) scanning is a common method of substation scene modeling that extracts point clouds of electrical equipment from the point cloud scene of a substation. The extraction effect is limited by uncertainty regarding the noise level, nonuniform point cloud density, and the computational complexity. In this paper, we propose a point cloud extraction solution for electrical equipment models. First, a statistical analysis of substation ground elevation is performed to obtain the point clouds of devices at the feature height and remove large numbers of redundant underground point clouds. Second, based on the statistically derived power equipment feature heights, the point cloud data are sliced according to the featured elevation intervals. Based on voxelization, the point cloud slices are then clustered using horizontal hierarchical clustering. The clustering results at different elevation intervals are then reclustered using vertical hierarchical clustering. Finally, we use filters combined with the DBSCAN algorithm to perform fine segmentation on the point cloud data. The results show that our slice clustering approach reduces the computational burden involved in point cloud processing, and the comprehensive clustering strategy ensures the accuracy of the clustering results.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3046313</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0057-2001</orcidid><orcidid>https://orcid.org/0000-0002-8528-3809</orcidid><orcidid>https://orcid.org/0000-0003-4556-5745</orcidid><orcidid>https://orcid.org/0000-0003-1312-9033</orcidid><orcidid>https://orcid.org/0000-0001-6260-4131</orcidid><orcidid>https://orcid.org/0000-0002-2050-0649</orcidid><orcidid>https://orcid.org/0000-0001-9208-4341</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.227482-227496 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3046313 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Algorithms Cluster analysis Clustering Clustering algorithms Clustering methods Computer Science Computer Science, Information Systems Electric equipment Elevation Engineering Engineering, Electrical & Electronic Image segmentation Intervals Lidar Noise level Noise levels Noise measurement point cloud segmentation Science & Technology smart grid Solid modeling Statistical analysis substation modeling Substations Technology Telecommunications Three dimensional models Three-dimensional displays |
title | An Efficient Voxel-Based Segmentation Algorithm Based on Hierarchical Clustering to Extract LIDAR Power Equipment Data in Transformer Substations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Voxel-Based%20Segmentation%20Algorithm%20Based%20on%20Hierarchical%20Clustering%20to%20Extract%20LIDAR%20Power%20Equipment%20Data%20in%20Transformer%20Substations&rft.jtitle=IEEE%20access&rft.au=Guo,%20Jianlong&rft.date=2020&rft.volume=8&rft.spage=227482&rft.epage=227496&rft.pages=227482-227496&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3046313&rft_dat=%3Cproquest_cross%3E2474859928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474859928&rft_id=info:pmid/&rft_ieee_id=9301293&rft_doaj_id=oai_doaj_org_article_0cae7f71ae6e4abc98698fc3d964dbfa&rfr_iscdi=true |