On Open-Set, High-Fidelity and Identity-Specific Face Transformation

In this paper, a Generative Adversarial Networks-based framework has been proposed for identity-specific face transformation with high fidelity in open domains. Specifically, for any face, the pro-posed framework can transform its identity to the target identity, while preserving attributes and deta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.224643-224653
Hauptverfasser: Zhang, Longhao, Pan, Xipeng, Yang, Huihua, Li, Lingqiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224653
container_issue
container_start_page 224643
container_title IEEE access
container_volume 8
creator Zhang, Longhao
Pan, Xipeng
Yang, Huihua
Li, Lingqiao
description In this paper, a Generative Adversarial Networks-based framework has been proposed for identity-specific face transformation with high fidelity in open domains. Specifically, for any face, the pro-posed framework can transform its identity to the target identity, while preserving attributes and details (e.g., pose, gender, age, facial expression, skin tone, illumination and background). To this end, an auto-encoder network is adopted to learn the transformation mapping, which encodes the source image into the latent representation, and reconstruct it with the target identity. In addition, the face parsing pyramid is introduced to help the decoder restore the attributes. Moreover, a novel perceptual constraint is applied to the transformed images to guarantee the correct change of the desired identity and to help retrieve the lost details during face identity transformation. Extensive experiments and comparisons to several open-source approaches demonstrate the efficacy of the proposed framework: it can achieve more realistic identity transformation while better preserving attributes and details.
doi_str_mv 10.1109/ACCESS.2020.3044187
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3044187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9291455</ieee_id><doaj_id>oai_doaj_org_article_ef51a32566244721a786f3c2947d0cbf</doaj_id><sourcerecordid>2472321576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3f28d5310aa2f06de8268fb546fa95033c79cc0e60537cd2b8210b9a9b4f1d123</originalsourceid><addsrcrecordid>eNpNUMtuwjAQtKpWKqJ8AZdIvTbUj9ixjyiFgoTEIfRsOX5QI0hSJxz4-5oGoe5ld0czs6sBYIrgDCEo3udFsSjLGYYYzgjMMsTzBzDCiImUUMIe_83PYNJ1BxiLR4jmI_CxrZNta-u0tP1bsvL773TpjT36_pKo2iRrY-s-LmnZWu2d18lSaZvsgqo714ST6n1Tv4Anp46dndz6GHwtF7tilW62n-tivkk1obxPicPcUIKgUthBZizHjLuKZswpQSEhOhdaQ8sgJbk2uOIYwUooUWUOGYTJGKwHX9Oog2yDP6lwkY3y8g9owl6q0Ht9tNI6ihTBlDGcZTlGKufMEY1FlhuoKxe9XgevNjQ_Z9v18tCcQx3flzgKCEY0Z5FFBpYOTdcF6-5XEZTX9OWQvrymL2_pR9V0UHlr7V0hsEAZpeQXard92g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472321576</pqid></control><display><type>article</type><title>On Open-Set, High-Fidelity and Identity-Specific Face Transformation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Longhao ; Pan, Xipeng ; Yang, Huihua ; Li, Lingqiao</creator><creatorcontrib>Zhang, Longhao ; Pan, Xipeng ; Yang, Huihua ; Li, Lingqiao</creatorcontrib><description>In this paper, a Generative Adversarial Networks-based framework has been proposed for identity-specific face transformation with high fidelity in open domains. Specifically, for any face, the pro-posed framework can transform its identity to the target identity, while preserving attributes and details (e.g., pose, gender, age, facial expression, skin tone, illumination and background). To this end, an auto-encoder network is adopted to learn the transformation mapping, which encodes the source image into the latent representation, and reconstruct it with the target identity. In addition, the face parsing pyramid is introduced to help the decoder restore the attributes. Moreover, a novel perceptual constraint is applied to the transformed images to guarantee the correct change of the desired identity and to help retrieve the lost details during face identity transformation. Extensive experiments and comparisons to several open-source approaches demonstrate the efficacy of the proposed framework: it can achieve more realistic identity transformation while better preserving attributes and details.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3044187</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Auto-encoder ; Coders ; Decoding ; face transformation ; Faces ; Gallium nitride ; Generative adversarial networks ; Generators ; Image reconstruction ; perceptual constraint ; Training ; Transformations (mathematics)</subject><ispartof>IEEE access, 2020, Vol.8, p.224643-224653</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-3f28d5310aa2f06de8268fb546fa95033c79cc0e60537cd2b8210b9a9b4f1d123</cites><orcidid>0000-0001-9402-0421 ; 0000-0003-2581-0520 ; 0000-0001-6334-4044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9291455$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhang, Longhao</creatorcontrib><creatorcontrib>Pan, Xipeng</creatorcontrib><creatorcontrib>Yang, Huihua</creatorcontrib><creatorcontrib>Li, Lingqiao</creatorcontrib><title>On Open-Set, High-Fidelity and Identity-Specific Face Transformation</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, a Generative Adversarial Networks-based framework has been proposed for identity-specific face transformation with high fidelity in open domains. Specifically, for any face, the pro-posed framework can transform its identity to the target identity, while preserving attributes and details (e.g., pose, gender, age, facial expression, skin tone, illumination and background). To this end, an auto-encoder network is adopted to learn the transformation mapping, which encodes the source image into the latent representation, and reconstruct it with the target identity. In addition, the face parsing pyramid is introduced to help the decoder restore the attributes. Moreover, a novel perceptual constraint is applied to the transformed images to guarantee the correct change of the desired identity and to help retrieve the lost details during face identity transformation. Extensive experiments and comparisons to several open-source approaches demonstrate the efficacy of the proposed framework: it can achieve more realistic identity transformation while better preserving attributes and details.</description><subject>Accuracy</subject><subject>Auto-encoder</subject><subject>Coders</subject><subject>Decoding</subject><subject>face transformation</subject><subject>Faces</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Image reconstruction</subject><subject>perceptual constraint</subject><subject>Training</subject><subject>Transformations (mathematics)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtuwjAQtKpWKqJ8AZdIvTbUj9ixjyiFgoTEIfRsOX5QI0hSJxz4-5oGoe5ld0czs6sBYIrgDCEo3udFsSjLGYYYzgjMMsTzBzDCiImUUMIe_83PYNJ1BxiLR4jmI_CxrZNta-u0tP1bsvL773TpjT36_pKo2iRrY-s-LmnZWu2d18lSaZvsgqo714ST6n1Tv4Anp46dndz6GHwtF7tilW62n-tivkk1obxPicPcUIKgUthBZizHjLuKZswpQSEhOhdaQ8sgJbk2uOIYwUooUWUOGYTJGKwHX9Oog2yDP6lwkY3y8g9owl6q0Ht9tNI6ihTBlDGcZTlGKufMEY1FlhuoKxe9XgevNjQ_Z9v18tCcQx3flzgKCEY0Z5FFBpYOTdcF6-5XEZTX9OWQvrymL2_pR9V0UHlr7V0hsEAZpeQXard92g</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhang, Longhao</creator><creator>Pan, Xipeng</creator><creator>Yang, Huihua</creator><creator>Li, Lingqiao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9402-0421</orcidid><orcidid>https://orcid.org/0000-0003-2581-0520</orcidid><orcidid>https://orcid.org/0000-0001-6334-4044</orcidid></search><sort><creationdate>2020</creationdate><title>On Open-Set, High-Fidelity and Identity-Specific Face Transformation</title><author>Zhang, Longhao ; Pan, Xipeng ; Yang, Huihua ; Li, Lingqiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3f28d5310aa2f06de8268fb546fa95033c79cc0e60537cd2b8210b9a9b4f1d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Auto-encoder</topic><topic>Coders</topic><topic>Decoding</topic><topic>face transformation</topic><topic>Faces</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Image reconstruction</topic><topic>perceptual constraint</topic><topic>Training</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Longhao</creatorcontrib><creatorcontrib>Pan, Xipeng</creatorcontrib><creatorcontrib>Yang, Huihua</creatorcontrib><creatorcontrib>Li, Lingqiao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Longhao</au><au>Pan, Xipeng</au><au>Yang, Huihua</au><au>Li, Lingqiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Open-Set, High-Fidelity and Identity-Specific Face Transformation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>224643</spage><epage>224653</epage><pages>224643-224653</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, a Generative Adversarial Networks-based framework has been proposed for identity-specific face transformation with high fidelity in open domains. Specifically, for any face, the pro-posed framework can transform its identity to the target identity, while preserving attributes and details (e.g., pose, gender, age, facial expression, skin tone, illumination and background). To this end, an auto-encoder network is adopted to learn the transformation mapping, which encodes the source image into the latent representation, and reconstruct it with the target identity. In addition, the face parsing pyramid is introduced to help the decoder restore the attributes. Moreover, a novel perceptual constraint is applied to the transformed images to guarantee the correct change of the desired identity and to help retrieve the lost details during face identity transformation. Extensive experiments and comparisons to several open-source approaches demonstrate the efficacy of the proposed framework: it can achieve more realistic identity transformation while better preserving attributes and details.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3044187</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9402-0421</orcidid><orcidid>https://orcid.org/0000-0003-2581-0520</orcidid><orcidid>https://orcid.org/0000-0001-6334-4044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.224643-224653
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3044187
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Auto-encoder
Coders
Decoding
face transformation
Faces
Gallium nitride
Generative adversarial networks
Generators
Image reconstruction
perceptual constraint
Training
Transformations (mathematics)
title On Open-Set, High-Fidelity and Identity-Specific Face Transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Open-Set,%20High-Fidelity%20and%20Identity-Specific%20Face%20Transformation&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Longhao&rft.date=2020&rft.volume=8&rft.spage=224643&rft.epage=224653&rft.pages=224643-224653&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3044187&rft_dat=%3Cproquest_cross%3E2472321576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472321576&rft_id=info:pmid/&rft_ieee_id=9291455&rft_doaj_id=oai_doaj_org_article_ef51a32566244721a786f3c2947d0cbf&rfr_iscdi=true