On Open-Set, High-Fidelity and Identity-Specific Face Transformation
In this paper, a Generative Adversarial Networks-based framework has been proposed for identity-specific face transformation with high fidelity in open domains. Specifically, for any face, the pro-posed framework can transform its identity to the target identity, while preserving attributes and deta...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.224643-224653 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224653 |
---|---|
container_issue | |
container_start_page | 224643 |
container_title | IEEE access |
container_volume | 8 |
creator | Zhang, Longhao Pan, Xipeng Yang, Huihua Li, Lingqiao |
description | In this paper, a Generative Adversarial Networks-based framework has been proposed for identity-specific face transformation with high fidelity in open domains. Specifically, for any face, the pro-posed framework can transform its identity to the target identity, while preserving attributes and details (e.g., pose, gender, age, facial expression, skin tone, illumination and background). To this end, an auto-encoder network is adopted to learn the transformation mapping, which encodes the source image into the latent representation, and reconstruct it with the target identity. In addition, the face parsing pyramid is introduced to help the decoder restore the attributes. Moreover, a novel perceptual constraint is applied to the transformed images to guarantee the correct change of the desired identity and to help retrieve the lost details during face identity transformation. Extensive experiments and comparisons to several open-source approaches demonstrate the efficacy of the proposed framework: it can achieve more realistic identity transformation while better preserving attributes and details. |
doi_str_mv | 10.1109/ACCESS.2020.3044187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3044187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9291455</ieee_id><doaj_id>oai_doaj_org_article_ef51a32566244721a786f3c2947d0cbf</doaj_id><sourcerecordid>2472321576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3f28d5310aa2f06de8268fb546fa95033c79cc0e60537cd2b8210b9a9b4f1d123</originalsourceid><addsrcrecordid>eNpNUMtuwjAQtKpWKqJ8AZdIvTbUj9ixjyiFgoTEIfRsOX5QI0hSJxz4-5oGoe5ld0czs6sBYIrgDCEo3udFsSjLGYYYzgjMMsTzBzDCiImUUMIe_83PYNJ1BxiLR4jmI_CxrZNta-u0tP1bsvL773TpjT36_pKo2iRrY-s-LmnZWu2d18lSaZvsgqo714ST6n1Tv4Anp46dndz6GHwtF7tilW62n-tivkk1obxPicPcUIKgUthBZizHjLuKZswpQSEhOhdaQ8sgJbk2uOIYwUooUWUOGYTJGKwHX9Oog2yDP6lwkY3y8g9owl6q0Ht9tNI6ihTBlDGcZTlGKufMEY1FlhuoKxe9XgevNjQ_Z9v18tCcQx3flzgKCEY0Z5FFBpYOTdcF6-5XEZTX9OWQvrymL2_pR9V0UHlr7V0hsEAZpeQXard92g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472321576</pqid></control><display><type>article</type><title>On Open-Set, High-Fidelity and Identity-Specific Face Transformation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Longhao ; Pan, Xipeng ; Yang, Huihua ; Li, Lingqiao</creator><creatorcontrib>Zhang, Longhao ; Pan, Xipeng ; Yang, Huihua ; Li, Lingqiao</creatorcontrib><description>In this paper, a Generative Adversarial Networks-based framework has been proposed for identity-specific face transformation with high fidelity in open domains. Specifically, for any face, the pro-posed framework can transform its identity to the target identity, while preserving attributes and details (e.g., pose, gender, age, facial expression, skin tone, illumination and background). To this end, an auto-encoder network is adopted to learn the transformation mapping, which encodes the source image into the latent representation, and reconstruct it with the target identity. In addition, the face parsing pyramid is introduced to help the decoder restore the attributes. Moreover, a novel perceptual constraint is applied to the transformed images to guarantee the correct change of the desired identity and to help retrieve the lost details during face identity transformation. Extensive experiments and comparisons to several open-source approaches demonstrate the efficacy of the proposed framework: it can achieve more realistic identity transformation while better preserving attributes and details.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3044187</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Auto-encoder ; Coders ; Decoding ; face transformation ; Faces ; Gallium nitride ; Generative adversarial networks ; Generators ; Image reconstruction ; perceptual constraint ; Training ; Transformations (mathematics)</subject><ispartof>IEEE access, 2020, Vol.8, p.224643-224653</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-3f28d5310aa2f06de8268fb546fa95033c79cc0e60537cd2b8210b9a9b4f1d123</cites><orcidid>0000-0001-9402-0421 ; 0000-0003-2581-0520 ; 0000-0001-6334-4044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9291455$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhang, Longhao</creatorcontrib><creatorcontrib>Pan, Xipeng</creatorcontrib><creatorcontrib>Yang, Huihua</creatorcontrib><creatorcontrib>Li, Lingqiao</creatorcontrib><title>On Open-Set, High-Fidelity and Identity-Specific Face Transformation</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, a Generative Adversarial Networks-based framework has been proposed for identity-specific face transformation with high fidelity in open domains. Specifically, for any face, the pro-posed framework can transform its identity to the target identity, while preserving attributes and details (e.g., pose, gender, age, facial expression, skin tone, illumination and background). To this end, an auto-encoder network is adopted to learn the transformation mapping, which encodes the source image into the latent representation, and reconstruct it with the target identity. In addition, the face parsing pyramid is introduced to help the decoder restore the attributes. Moreover, a novel perceptual constraint is applied to the transformed images to guarantee the correct change of the desired identity and to help retrieve the lost details during face identity transformation. Extensive experiments and comparisons to several open-source approaches demonstrate the efficacy of the proposed framework: it can achieve more realistic identity transformation while better preserving attributes and details.</description><subject>Accuracy</subject><subject>Auto-encoder</subject><subject>Coders</subject><subject>Decoding</subject><subject>face transformation</subject><subject>Faces</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Image reconstruction</subject><subject>perceptual constraint</subject><subject>Training</subject><subject>Transformations (mathematics)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtuwjAQtKpWKqJ8AZdIvTbUj9ixjyiFgoTEIfRsOX5QI0hSJxz4-5oGoe5ld0czs6sBYIrgDCEo3udFsSjLGYYYzgjMMsTzBzDCiImUUMIe_83PYNJ1BxiLR4jmI_CxrZNta-u0tP1bsvL773TpjT36_pKo2iRrY-s-LmnZWu2d18lSaZvsgqo714ST6n1Tv4Anp46dndz6GHwtF7tilW62n-tivkk1obxPicPcUIKgUthBZizHjLuKZswpQSEhOhdaQ8sgJbk2uOIYwUooUWUOGYTJGKwHX9Oog2yDP6lwkY3y8g9owl6q0Ht9tNI6ihTBlDGcZTlGKufMEY1FlhuoKxe9XgevNjQ_Z9v18tCcQx3flzgKCEY0Z5FFBpYOTdcF6-5XEZTX9OWQvrymL2_pR9V0UHlr7V0hsEAZpeQXard92g</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhang, Longhao</creator><creator>Pan, Xipeng</creator><creator>Yang, Huihua</creator><creator>Li, Lingqiao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9402-0421</orcidid><orcidid>https://orcid.org/0000-0003-2581-0520</orcidid><orcidid>https://orcid.org/0000-0001-6334-4044</orcidid></search><sort><creationdate>2020</creationdate><title>On Open-Set, High-Fidelity and Identity-Specific Face Transformation</title><author>Zhang, Longhao ; Pan, Xipeng ; Yang, Huihua ; Li, Lingqiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3f28d5310aa2f06de8268fb546fa95033c79cc0e60537cd2b8210b9a9b4f1d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Auto-encoder</topic><topic>Coders</topic><topic>Decoding</topic><topic>face transformation</topic><topic>Faces</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Image reconstruction</topic><topic>perceptual constraint</topic><topic>Training</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Longhao</creatorcontrib><creatorcontrib>Pan, Xipeng</creatorcontrib><creatorcontrib>Yang, Huihua</creatorcontrib><creatorcontrib>Li, Lingqiao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Longhao</au><au>Pan, Xipeng</au><au>Yang, Huihua</au><au>Li, Lingqiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Open-Set, High-Fidelity and Identity-Specific Face Transformation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>224643</spage><epage>224653</epage><pages>224643-224653</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, a Generative Adversarial Networks-based framework has been proposed for identity-specific face transformation with high fidelity in open domains. Specifically, for any face, the pro-posed framework can transform its identity to the target identity, while preserving attributes and details (e.g., pose, gender, age, facial expression, skin tone, illumination and background). To this end, an auto-encoder network is adopted to learn the transformation mapping, which encodes the source image into the latent representation, and reconstruct it with the target identity. In addition, the face parsing pyramid is introduced to help the decoder restore the attributes. Moreover, a novel perceptual constraint is applied to the transformed images to guarantee the correct change of the desired identity and to help retrieve the lost details during face identity transformation. Extensive experiments and comparisons to several open-source approaches demonstrate the efficacy of the proposed framework: it can achieve more realistic identity transformation while better preserving attributes and details.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3044187</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9402-0421</orcidid><orcidid>https://orcid.org/0000-0003-2581-0520</orcidid><orcidid>https://orcid.org/0000-0001-6334-4044</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.224643-224653 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3044187 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Auto-encoder Coders Decoding face transformation Faces Gallium nitride Generative adversarial networks Generators Image reconstruction perceptual constraint Training Transformations (mathematics) |
title | On Open-Set, High-Fidelity and Identity-Specific Face Transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Open-Set,%20High-Fidelity%20and%20Identity-Specific%20Face%20Transformation&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Longhao&rft.date=2020&rft.volume=8&rft.spage=224643&rft.epage=224653&rft.pages=224643-224653&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3044187&rft_dat=%3Cproquest_cross%3E2472321576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472321576&rft_id=info:pmid/&rft_ieee_id=9291455&rft_doaj_id=oai_doaj_org_article_ef51a32566244721a786f3c2947d0cbf&rfr_iscdi=true |