Survey on Field Programmable Analog Array Architectures Eliminating Routing Network
This work focuses on reviewing the field programmable analog array (FPAA) architectures that eliminate the use of switches in signal path. The conventional FPAA architecture is composed of configurable analog blocks (CABs) connected together through switches in routing networks.The architectures cov...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Diab, Maha S. Mahmoud, Soliman A. |
description | This work focuses on reviewing the field programmable analog array (FPAA) architectures that eliminate the use of switches in signal path. The conventional FPAA architecture is composed of configurable analog blocks (CABs) connected together through switches in routing networks.The architectures covered in this survey have replaced the use of routing network by direct connection between CABs, and use of programmable analog building blocks. The first architecture covered is presented by Becker et al. with a hexagonal topology using operational transconductance amplifier (OTA) as a building block. The second architecture is presented by Mahmoud and Soliman, which uses the second generation current conveyor (CCII+) as a building block for their CABs arranged in a hexagonal architecture as well. Lastly, a more recent FPAA with a rectangular architecture proposed by Diab and Mahmoud is discussed, it uses the OTA as a building block for their rectangular architecture. The three FPAAs targeted continuous-time analog signal processing, having two architectures targeting high frequency applications, while the last targeting low frequency applications. The architectures, CAB structures, and the applications of each FPAA is covered separately in each section. |
doi_str_mv | 10.1109/ACCESS.2020.3043292 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3043292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9286441</ieee_id><doaj_id>oai_doaj_org_article_c164fa5d317943dea0152a32577e7edb</doaj_id><sourcerecordid>2470642972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-9b141dd26d4cf33f2d9c9524d5dfc55b6d03983134275efe68d561f14d4ed40e3</originalsourceid><addsrcrecordid>eNpNUU1PwkAQbYwmEuQXcGniGdzv7R4bAkpC1IieN8vuFBcLi9tWw7-3UEKcw8zk5b03mbwkGWI0xhiph3wymS6XY4IIGlPEKFHkKukRLNSIciqu_-23yaCqNqitrIW47CXLZRN_4JCGXTrzULr0NYZ1NNutWZWQ5jtThnWax2gObbefvgZbNxGqdFr6rd-Z2u_W6VtoTvMZ6t8Qv-6Sm8KUFQzOs598zKbvk6fR4uVxPskXI8tkVo_UCjPsHBGO2YLSgjhlFSfMcVdYzlfCIaoyiikjkkMBInNc4AIzx8AxBLSfzDtfF8xG76PfmnjQwXh9AkJcaxNrb0vQFgtWGO4olopRBwZhTgwlXEqQ4Fat133ntY_hu4Gq1pvQxPb9ShMmkWBESdKyaMeyMVRVhOJyFSN9DEN3YehjGPocRqsadioPABeFIplgDNM_bsOFKw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470642972</pqid></control><display><type>article</type><title>Survey on Field Programmable Analog Array Architectures Eliminating Routing Network</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Diab, Maha S. ; Mahmoud, Soliman A.</creator><creatorcontrib>Diab, Maha S. ; Mahmoud, Soliman A.</creatorcontrib><description>This work focuses on reviewing the field programmable analog array (FPAA) architectures that eliminate the use of switches in signal path. The conventional FPAA architecture is composed of configurable analog blocks (CABs) connected together through switches in routing networks.The architectures covered in this survey have replaced the use of routing network by direct connection between CABs, and use of programmable analog building blocks. The first architecture covered is presented by Becker et al. with a hexagonal topology using operational transconductance amplifier (OTA) as a building block. The second architecture is presented by Mahmoud and Soliman, which uses the second generation current conveyor (CCII+) as a building block for their CABs arranged in a hexagonal architecture as well. Lastly, a more recent FPAA with a rectangular architecture proposed by Diab and Mahmoud is discussed, it uses the OTA as a building block for their rectangular architecture. The three FPAAs targeted continuous-time analog signal processing, having two architectures targeting high frequency applications, while the last targeting low frequency applications. The architectures, CAB structures, and the applications of each FPAA is covered separately in each section.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3043292</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Architecture ; Cabs ; Capacitors ; Continuous-time ; Current conveyors ; field programmable analog array (FPAA) ; Field programmable analog arrays ; Field programmable gate arrays ; filters ; Operational amplifiers ; operational transconductance amplifier (OTA) ; Routing ; second generation current conveyor (CCII+) ; Signal processing ; Switches ; Topology ; Transconductance</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-9b141dd26d4cf33f2d9c9524d5dfc55b6d03983134275efe68d561f14d4ed40e3</citedby><cites>FETCH-LOGICAL-c478t-9b141dd26d4cf33f2d9c9524d5dfc55b6d03983134275efe68d561f14d4ed40e3</cites><orcidid>0000-0003-0485-4882 ; 0000-0003-0581-1796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9286441$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Diab, Maha S.</creatorcontrib><creatorcontrib>Mahmoud, Soliman A.</creatorcontrib><title>Survey on Field Programmable Analog Array Architectures Eliminating Routing Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>This work focuses on reviewing the field programmable analog array (FPAA) architectures that eliminate the use of switches in signal path. The conventional FPAA architecture is composed of configurable analog blocks (CABs) connected together through switches in routing networks.The architectures covered in this survey have replaced the use of routing network by direct connection between CABs, and use of programmable analog building blocks. The first architecture covered is presented by Becker et al. with a hexagonal topology using operational transconductance amplifier (OTA) as a building block. The second architecture is presented by Mahmoud and Soliman, which uses the second generation current conveyor (CCII+) as a building block for their CABs arranged in a hexagonal architecture as well. Lastly, a more recent FPAA with a rectangular architecture proposed by Diab and Mahmoud is discussed, it uses the OTA as a building block for their rectangular architecture. The three FPAAs targeted continuous-time analog signal processing, having two architectures targeting high frequency applications, while the last targeting low frequency applications. The architectures, CAB structures, and the applications of each FPAA is covered separately in each section.</description><subject>Architecture</subject><subject>Cabs</subject><subject>Capacitors</subject><subject>Continuous-time</subject><subject>Current conveyors</subject><subject>field programmable analog array (FPAA)</subject><subject>Field programmable analog arrays</subject><subject>Field programmable gate arrays</subject><subject>filters</subject><subject>Operational amplifiers</subject><subject>operational transconductance amplifier (OTA)</subject><subject>Routing</subject><subject>second generation current conveyor (CCII+)</subject><subject>Signal processing</subject><subject>Switches</subject><subject>Topology</subject><subject>Transconductance</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwkAQbYwmEuQXcGniGdzv7R4bAkpC1IieN8vuFBcLi9tWw7-3UEKcw8zk5b03mbwkGWI0xhiph3wymS6XY4IIGlPEKFHkKukRLNSIciqu_-23yaCqNqitrIW47CXLZRN_4JCGXTrzULr0NYZ1NNutWZWQ5jtThnWax2gObbefvgZbNxGqdFr6rd-Z2u_W6VtoTvMZ6t8Qv-6Sm8KUFQzOs598zKbvk6fR4uVxPskXI8tkVo_UCjPsHBGO2YLSgjhlFSfMcVdYzlfCIaoyiikjkkMBInNc4AIzx8AxBLSfzDtfF8xG76PfmnjQwXh9AkJcaxNrb0vQFgtWGO4olopRBwZhTgwlXEqQ4Fat133ntY_hu4Gq1pvQxPb9ShMmkWBESdKyaMeyMVRVhOJyFSN9DEN3YehjGPocRqsadioPABeFIplgDNM_bsOFKw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Diab, Maha S.</creator><creator>Mahmoud, Soliman A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0485-4882</orcidid><orcidid>https://orcid.org/0000-0003-0581-1796</orcidid></search><sort><creationdate>20200101</creationdate><title>Survey on Field Programmable Analog Array Architectures Eliminating Routing Network</title><author>Diab, Maha S. ; Mahmoud, Soliman A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-9b141dd26d4cf33f2d9c9524d5dfc55b6d03983134275efe68d561f14d4ed40e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Architecture</topic><topic>Cabs</topic><topic>Capacitors</topic><topic>Continuous-time</topic><topic>Current conveyors</topic><topic>field programmable analog array (FPAA)</topic><topic>Field programmable analog arrays</topic><topic>Field programmable gate arrays</topic><topic>filters</topic><topic>Operational amplifiers</topic><topic>operational transconductance amplifier (OTA)</topic><topic>Routing</topic><topic>second generation current conveyor (CCII+)</topic><topic>Signal processing</topic><topic>Switches</topic><topic>Topology</topic><topic>Transconductance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diab, Maha S.</creatorcontrib><creatorcontrib>Mahmoud, Soliman A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diab, Maha S.</au><au>Mahmoud, Soliman A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survey on Field Programmable Analog Array Architectures Eliminating Routing Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This work focuses on reviewing the field programmable analog array (FPAA) architectures that eliminate the use of switches in signal path. The conventional FPAA architecture is composed of configurable analog blocks (CABs) connected together through switches in routing networks.The architectures covered in this survey have replaced the use of routing network by direct connection between CABs, and use of programmable analog building blocks. The first architecture covered is presented by Becker et al. with a hexagonal topology using operational transconductance amplifier (OTA) as a building block. The second architecture is presented by Mahmoud and Soliman, which uses the second generation current conveyor (CCII+) as a building block for their CABs arranged in a hexagonal architecture as well. Lastly, a more recent FPAA with a rectangular architecture proposed by Diab and Mahmoud is discussed, it uses the OTA as a building block for their rectangular architecture. The three FPAAs targeted continuous-time analog signal processing, having two architectures targeting high frequency applications, while the last targeting low frequency applications. The architectures, CAB structures, and the applications of each FPAA is covered separately in each section.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3043292</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0485-4882</orcidid><orcidid>https://orcid.org/0000-0003-0581-1796</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3043292 |
source | DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Architecture Cabs Capacitors Continuous-time Current conveyors field programmable analog array (FPAA) Field programmable analog arrays Field programmable gate arrays filters Operational amplifiers operational transconductance amplifier (OTA) Routing second generation current conveyor (CCII+) Signal processing Switches Topology Transconductance |
title | Survey on Field Programmable Analog Array Architectures Eliminating Routing Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survey%20on%20Field%20Programmable%20Analog%20Array%20Architectures%20Eliminating%20Routing%20Network&rft.jtitle=IEEE%20access&rft.au=Diab,%20Maha%20S.&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3043292&rft_dat=%3Cproquest_cross%3E2470642972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470642972&rft_id=info:pmid/&rft_ieee_id=9286441&rft_doaj_id=oai_doaj_org_article_c164fa5d317943dea0152a32577e7edb&rfr_iscdi=true |