Survey on Field Programmable Analog Array Architectures Eliminating Routing Network

This work focuses on reviewing the field programmable analog array (FPAA) architectures that eliminate the use of switches in signal path. The conventional FPAA architecture is composed of configurable analog blocks (CABs) connected together through switches in routing networks.The architectures cov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Diab, Maha S., Mahmoud, Soliman A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Diab, Maha S.
Mahmoud, Soliman A.
description This work focuses on reviewing the field programmable analog array (FPAA) architectures that eliminate the use of switches in signal path. The conventional FPAA architecture is composed of configurable analog blocks (CABs) connected together through switches in routing networks.The architectures covered in this survey have replaced the use of routing network by direct connection between CABs, and use of programmable analog building blocks. The first architecture covered is presented by Becker et al. with a hexagonal topology using operational transconductance amplifier (OTA) as a building block. The second architecture is presented by Mahmoud and Soliman, which uses the second generation current conveyor (CCII+) as a building block for their CABs arranged in a hexagonal architecture as well. Lastly, a more recent FPAA with a rectangular architecture proposed by Diab and Mahmoud is discussed, it uses the OTA as a building block for their rectangular architecture. The three FPAAs targeted continuous-time analog signal processing, having two architectures targeting high frequency applications, while the last targeting low frequency applications. The architectures, CAB structures, and the applications of each FPAA is covered separately in each section.
doi_str_mv 10.1109/ACCESS.2020.3043292
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3043292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9286441</ieee_id><doaj_id>oai_doaj_org_article_c164fa5d317943dea0152a32577e7edb</doaj_id><sourcerecordid>2470642972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-9b141dd26d4cf33f2d9c9524d5dfc55b6d03983134275efe68d561f14d4ed40e3</originalsourceid><addsrcrecordid>eNpNUU1PwkAQbYwmEuQXcGniGdzv7R4bAkpC1IieN8vuFBcLi9tWw7-3UEKcw8zk5b03mbwkGWI0xhiph3wymS6XY4IIGlPEKFHkKukRLNSIciqu_-23yaCqNqitrIW47CXLZRN_4JCGXTrzULr0NYZ1NNutWZWQ5jtThnWax2gObbefvgZbNxGqdFr6rd-Z2u_W6VtoTvMZ6t8Qv-6Sm8KUFQzOs598zKbvk6fR4uVxPskXI8tkVo_UCjPsHBGO2YLSgjhlFSfMcVdYzlfCIaoyiikjkkMBInNc4AIzx8AxBLSfzDtfF8xG76PfmnjQwXh9AkJcaxNrb0vQFgtWGO4olopRBwZhTgwlXEqQ4Fat133ntY_hu4Gq1pvQxPb9ShMmkWBESdKyaMeyMVRVhOJyFSN9DEN3YehjGPocRqsadioPABeFIplgDNM_bsOFKw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470642972</pqid></control><display><type>article</type><title>Survey on Field Programmable Analog Array Architectures Eliminating Routing Network</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Diab, Maha S. ; Mahmoud, Soliman A.</creator><creatorcontrib>Diab, Maha S. ; Mahmoud, Soliman A.</creatorcontrib><description>This work focuses on reviewing the field programmable analog array (FPAA) architectures that eliminate the use of switches in signal path. The conventional FPAA architecture is composed of configurable analog blocks (CABs) connected together through switches in routing networks.The architectures covered in this survey have replaced the use of routing network by direct connection between CABs, and use of programmable analog building blocks. The first architecture covered is presented by Becker et al. with a hexagonal topology using operational transconductance amplifier (OTA) as a building block. The second architecture is presented by Mahmoud and Soliman, which uses the second generation current conveyor (CCII+) as a building block for their CABs arranged in a hexagonal architecture as well. Lastly, a more recent FPAA with a rectangular architecture proposed by Diab and Mahmoud is discussed, it uses the OTA as a building block for their rectangular architecture. The three FPAAs targeted continuous-time analog signal processing, having two architectures targeting high frequency applications, while the last targeting low frequency applications. The architectures, CAB structures, and the applications of each FPAA is covered separately in each section.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3043292</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Architecture ; Cabs ; Capacitors ; Continuous-time ; Current conveyors ; field programmable analog array (FPAA) ; Field programmable analog arrays ; Field programmable gate arrays ; filters ; Operational amplifiers ; operational transconductance amplifier (OTA) ; Routing ; second generation current conveyor (CCII+) ; Signal processing ; Switches ; Topology ; Transconductance</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-9b141dd26d4cf33f2d9c9524d5dfc55b6d03983134275efe68d561f14d4ed40e3</citedby><cites>FETCH-LOGICAL-c478t-9b141dd26d4cf33f2d9c9524d5dfc55b6d03983134275efe68d561f14d4ed40e3</cites><orcidid>0000-0003-0485-4882 ; 0000-0003-0581-1796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9286441$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Diab, Maha S.</creatorcontrib><creatorcontrib>Mahmoud, Soliman A.</creatorcontrib><title>Survey on Field Programmable Analog Array Architectures Eliminating Routing Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>This work focuses on reviewing the field programmable analog array (FPAA) architectures that eliminate the use of switches in signal path. The conventional FPAA architecture is composed of configurable analog blocks (CABs) connected together through switches in routing networks.The architectures covered in this survey have replaced the use of routing network by direct connection between CABs, and use of programmable analog building blocks. The first architecture covered is presented by Becker et al. with a hexagonal topology using operational transconductance amplifier (OTA) as a building block. The second architecture is presented by Mahmoud and Soliman, which uses the second generation current conveyor (CCII+) as a building block for their CABs arranged in a hexagonal architecture as well. Lastly, a more recent FPAA with a rectangular architecture proposed by Diab and Mahmoud is discussed, it uses the OTA as a building block for their rectangular architecture. The three FPAAs targeted continuous-time analog signal processing, having two architectures targeting high frequency applications, while the last targeting low frequency applications. The architectures, CAB structures, and the applications of each FPAA is covered separately in each section.</description><subject>Architecture</subject><subject>Cabs</subject><subject>Capacitors</subject><subject>Continuous-time</subject><subject>Current conveyors</subject><subject>field programmable analog array (FPAA)</subject><subject>Field programmable analog arrays</subject><subject>Field programmable gate arrays</subject><subject>filters</subject><subject>Operational amplifiers</subject><subject>operational transconductance amplifier (OTA)</subject><subject>Routing</subject><subject>second generation current conveyor (CCII+)</subject><subject>Signal processing</subject><subject>Switches</subject><subject>Topology</subject><subject>Transconductance</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwkAQbYwmEuQXcGniGdzv7R4bAkpC1IieN8vuFBcLi9tWw7-3UEKcw8zk5b03mbwkGWI0xhiph3wymS6XY4IIGlPEKFHkKukRLNSIciqu_-23yaCqNqitrIW47CXLZRN_4JCGXTrzULr0NYZ1NNutWZWQ5jtThnWax2gObbefvgZbNxGqdFr6rd-Z2u_W6VtoTvMZ6t8Qv-6Sm8KUFQzOs598zKbvk6fR4uVxPskXI8tkVo_UCjPsHBGO2YLSgjhlFSfMcVdYzlfCIaoyiikjkkMBInNc4AIzx8AxBLSfzDtfF8xG76PfmnjQwXh9AkJcaxNrb0vQFgtWGO4olopRBwZhTgwlXEqQ4Fat133ntY_hu4Gq1pvQxPb9ShMmkWBESdKyaMeyMVRVhOJyFSN9DEN3YehjGPocRqsadioPABeFIplgDNM_bsOFKw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Diab, Maha S.</creator><creator>Mahmoud, Soliman A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0485-4882</orcidid><orcidid>https://orcid.org/0000-0003-0581-1796</orcidid></search><sort><creationdate>20200101</creationdate><title>Survey on Field Programmable Analog Array Architectures Eliminating Routing Network</title><author>Diab, Maha S. ; Mahmoud, Soliman A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-9b141dd26d4cf33f2d9c9524d5dfc55b6d03983134275efe68d561f14d4ed40e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Architecture</topic><topic>Cabs</topic><topic>Capacitors</topic><topic>Continuous-time</topic><topic>Current conveyors</topic><topic>field programmable analog array (FPAA)</topic><topic>Field programmable analog arrays</topic><topic>Field programmable gate arrays</topic><topic>filters</topic><topic>Operational amplifiers</topic><topic>operational transconductance amplifier (OTA)</topic><topic>Routing</topic><topic>second generation current conveyor (CCII+)</topic><topic>Signal processing</topic><topic>Switches</topic><topic>Topology</topic><topic>Transconductance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diab, Maha S.</creatorcontrib><creatorcontrib>Mahmoud, Soliman A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diab, Maha S.</au><au>Mahmoud, Soliman A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survey on Field Programmable Analog Array Architectures Eliminating Routing Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This work focuses on reviewing the field programmable analog array (FPAA) architectures that eliminate the use of switches in signal path. The conventional FPAA architecture is composed of configurable analog blocks (CABs) connected together through switches in routing networks.The architectures covered in this survey have replaced the use of routing network by direct connection between CABs, and use of programmable analog building blocks. The first architecture covered is presented by Becker et al. with a hexagonal topology using operational transconductance amplifier (OTA) as a building block. The second architecture is presented by Mahmoud and Soliman, which uses the second generation current conveyor (CCII+) as a building block for their CABs arranged in a hexagonal architecture as well. Lastly, a more recent FPAA with a rectangular architecture proposed by Diab and Mahmoud is discussed, it uses the OTA as a building block for their rectangular architecture. The three FPAAs targeted continuous-time analog signal processing, having two architectures targeting high frequency applications, while the last targeting low frequency applications. The architectures, CAB structures, and the applications of each FPAA is covered separately in each section.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3043292</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0485-4882</orcidid><orcidid>https://orcid.org/0000-0003-0581-1796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3043292
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Architecture
Cabs
Capacitors
Continuous-time
Current conveyors
field programmable analog array (FPAA)
Field programmable analog arrays
Field programmable gate arrays
filters
Operational amplifiers
operational transconductance amplifier (OTA)
Routing
second generation current conveyor (CCII+)
Signal processing
Switches
Topology
Transconductance
title Survey on Field Programmable Analog Array Architectures Eliminating Routing Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survey%20on%20Field%20Programmable%20Analog%20Array%20Architectures%20Eliminating%20Routing%20Network&rft.jtitle=IEEE%20access&rft.au=Diab,%20Maha%20S.&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3043292&rft_dat=%3Cproquest_cross%3E2470642972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470642972&rft_id=info:pmid/&rft_ieee_id=9286441&rft_doaj_id=oai_doaj_org_article_c164fa5d317943dea0152a32577e7edb&rfr_iscdi=true