An Efficient Method to Detect Sleep Hypopnea- Apnea Events Based on EEG Signals

Hypopnea refers to the state in which insufficient alveolar ventilation during night sleep decreases the respiratory airflow by more than 50% of the airflow. However, sleep apnea is a more serious respiratory event, such as complete cessation of respiratory airflow for 10 seconds. The occurrence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.641-650
Hauptverfasser: Wang, Yao, Ji, Siyu, Yang, Tianshun, Wang, Xiaohong, Wang, Huiquan, Zhao, Xiaoyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 650
container_issue
container_start_page 641
container_title IEEE access
container_volume 9
creator Wang, Yao
Ji, Siyu
Yang, Tianshun
Wang, Xiaohong
Wang, Huiquan
Zhao, Xiaoyun
description Hypopnea refers to the state in which insufficient alveolar ventilation during night sleep decreases the respiratory airflow by more than 50% of the airflow. However, sleep apnea is a more serious respiratory event, such as complete cessation of respiratory airflow for 10 seconds. The occurrence of hypopnea is a precursor to the occurrence of apnea events and the two are closely connected. In this paper, we propose a method based on the combination of discrete wavelet transform and approximate entropy of EEG signals to detect sleep apnea and hypopnea events. For this purpose, first, data preprocessing is performed on the EEG record data set obtained from Tianjin Chest Hospital, and then infinite impulse response (IIR) Butterworth bandpass filter is used to decompose the data into delta, theta, alpha, beta and gamma. Second, descriptive features are extracted based on sub-bands discrete wavelet transform such as the approximate entropy of high-frequency coefficients. Third, the features are filtered based on Support Vector Machine (SVM) recursive elimination. Finally, several machine learning algorithms including SVM, K-Nearest Neighbor (KNN) and Random forest (RF) are employed to identify the occurrence of sleep hypopnea-apnea events. The highest accuracy rate reached 94.33%, the sensitivity reached 93.10%, and the specificity reached 95.07%. The obtained results validate that the proposed method is an effective and practical diagnostic method to detect the occurrence of hypopnea-apnea events.
doi_str_mv 10.1109/ACCESS.2020.3038486
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3038486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9261412</ieee_id><doaj_id>oai_doaj_org_article_9102a4e24f7e4d15b5aaf5e138d9b3db</doaj_id><sourcerecordid>2475960497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-167c53f3508445e98a4b94c78f93998200ee19c7ef4f75561564233f2cd209763</originalsourceid><addsrcrecordid>eNpNkV9PwjAUxRejiQT5BLw08XnY_2sfESeQYHiYPjelu8URpHMbJnx7iyPE-3Jubs75Nc1JkjHBE0KwfprOZnlRTCimeMIwU1zJm2RAidQpE0ze_tvvk1Hb7nAcFU8iGyTr6QHl3leugkOH3qD7DCXqAnqBDlyHij1AjRanOtQHsCmangXlP9HcomfbQolCBORzVFTbg923D8mdjwKjiw6Tj9f8fbZIV-v5cjZdpY5j1aVEZk4wzwRWnAvQyvKN5i5TXjOtFcUYgGiXgec-E0ISITllzFNXUqwzyYbJsueWwe5M3VRftjmZYCvzdwjN1timq9wejCaYWg40koCXRGyEtV4AYarUG1ZuIuuxZ9VN-D5C25ldODbn3xjKM6El5jqLLta7XBPatgF_fZVgcy7C9EWYcxHmUkRMjftUBQDXhKaScELZLxEjgHk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475960497</pqid></control><display><type>article</type><title>An Efficient Method to Detect Sleep Hypopnea- Apnea Events Based on EEG Signals</title><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>IEEE Xplore Open Access Journals</source><creator>Wang, Yao ; Ji, Siyu ; Yang, Tianshun ; Wang, Xiaohong ; Wang, Huiquan ; Zhao, Xiaoyun</creator><creatorcontrib>Wang, Yao ; Ji, Siyu ; Yang, Tianshun ; Wang, Xiaohong ; Wang, Huiquan ; Zhao, Xiaoyun</creatorcontrib><description>Hypopnea refers to the state in which insufficient alveolar ventilation during night sleep decreases the respiratory airflow by more than 50% of the airflow. However, sleep apnea is a more serious respiratory event, such as complete cessation of respiratory airflow for 10 seconds. The occurrence of hypopnea is a precursor to the occurrence of apnea events and the two are closely connected. In this paper, we propose a method based on the combination of discrete wavelet transform and approximate entropy of EEG signals to detect sleep apnea and hypopnea events. For this purpose, first, data preprocessing is performed on the EEG record data set obtained from Tianjin Chest Hospital, and then infinite impulse response (IIR) Butterworth bandpass filter is used to decompose the data into delta, theta, alpha, beta and gamma. Second, descriptive features are extracted based on sub-bands discrete wavelet transform such as the approximate entropy of high-frequency coefficients. Third, the features are filtered based on Support Vector Machine (SVM) recursive elimination. Finally, several machine learning algorithms including SVM, K-Nearest Neighbor (KNN) and Random forest (RF) are employed to identify the occurrence of sleep hypopnea-apnea events. The highest accuracy rate reached 94.33%, the sensitivity reached 93.10%, and the specificity reached 95.07%. The obtained results validate that the proposed method is an effective and practical diagnostic method to detect the occurrence of hypopnea-apnea events.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3038486</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air flow ; Algorithms ; approximate entropy ; Bandpass filters ; Blood ; Diagnostic systems ; Discrete Wavelet Transform ; Discrete wavelet transforms ; Electroencephalography ; Entropy ; Feature extraction ; Impulse response ; Machine learning ; machine learning classification model ; Sensitivity ; Sleep apnea ; Sleep apnea hypopnea syndrome ; support vector machine recursive elimination ; Support vector machines ; Wavelet transforms</subject><ispartof>IEEE access, 2021, Vol.9, p.641-650</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-167c53f3508445e98a4b94c78f93998200ee19c7ef4f75561564233f2cd209763</citedby><cites>FETCH-LOGICAL-c408t-167c53f3508445e98a4b94c78f93998200ee19c7ef4f75561564233f2cd209763</cites><orcidid>0000-0003-0873-7229 ; 0000-0002-0922-6618 ; 0000-0002-7941-7671 ; 0000-0002-7896-303X ; 0000-0002-4788-8196 ; 0000-0002-9913-0950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9261412$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Ji, Siyu</creatorcontrib><creatorcontrib>Yang, Tianshun</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Wang, Huiquan</creatorcontrib><creatorcontrib>Zhao, Xiaoyun</creatorcontrib><title>An Efficient Method to Detect Sleep Hypopnea- Apnea Events Based on EEG Signals</title><title>IEEE access</title><addtitle>Access</addtitle><description>Hypopnea refers to the state in which insufficient alveolar ventilation during night sleep decreases the respiratory airflow by more than 50% of the airflow. However, sleep apnea is a more serious respiratory event, such as complete cessation of respiratory airflow for 10 seconds. The occurrence of hypopnea is a precursor to the occurrence of apnea events and the two are closely connected. In this paper, we propose a method based on the combination of discrete wavelet transform and approximate entropy of EEG signals to detect sleep apnea and hypopnea events. For this purpose, first, data preprocessing is performed on the EEG record data set obtained from Tianjin Chest Hospital, and then infinite impulse response (IIR) Butterworth bandpass filter is used to decompose the data into delta, theta, alpha, beta and gamma. Second, descriptive features are extracted based on sub-bands discrete wavelet transform such as the approximate entropy of high-frequency coefficients. Third, the features are filtered based on Support Vector Machine (SVM) recursive elimination. Finally, several machine learning algorithms including SVM, K-Nearest Neighbor (KNN) and Random forest (RF) are employed to identify the occurrence of sleep hypopnea-apnea events. The highest accuracy rate reached 94.33%, the sensitivity reached 93.10%, and the specificity reached 95.07%. The obtained results validate that the proposed method is an effective and practical diagnostic method to detect the occurrence of hypopnea-apnea events.</description><subject>Air flow</subject><subject>Algorithms</subject><subject>approximate entropy</subject><subject>Bandpass filters</subject><subject>Blood</subject><subject>Diagnostic systems</subject><subject>Discrete Wavelet Transform</subject><subject>Discrete wavelet transforms</subject><subject>Electroencephalography</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Impulse response</subject><subject>Machine learning</subject><subject>machine learning classification model</subject><subject>Sensitivity</subject><subject>Sleep apnea</subject><subject>Sleep apnea hypopnea syndrome</subject><subject>support vector machine recursive elimination</subject><subject>Support vector machines</subject><subject>Wavelet transforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV9PwjAUxRejiQT5BLw08XnY_2sfESeQYHiYPjelu8URpHMbJnx7iyPE-3Jubs75Nc1JkjHBE0KwfprOZnlRTCimeMIwU1zJm2RAidQpE0ze_tvvk1Hb7nAcFU8iGyTr6QHl3leugkOH3qD7DCXqAnqBDlyHij1AjRanOtQHsCmangXlP9HcomfbQolCBORzVFTbg923D8mdjwKjiw6Tj9f8fbZIV-v5cjZdpY5j1aVEZk4wzwRWnAvQyvKN5i5TXjOtFcUYgGiXgec-E0ISITllzFNXUqwzyYbJsueWwe5M3VRftjmZYCvzdwjN1timq9wejCaYWg40koCXRGyEtV4AYarUG1ZuIuuxZ9VN-D5C25ldODbn3xjKM6El5jqLLta7XBPatgF_fZVgcy7C9EWYcxHmUkRMjftUBQDXhKaScELZLxEjgHk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Yao</creator><creator>Ji, Siyu</creator><creator>Yang, Tianshun</creator><creator>Wang, Xiaohong</creator><creator>Wang, Huiquan</creator><creator>Zhao, Xiaoyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0873-7229</orcidid><orcidid>https://orcid.org/0000-0002-0922-6618</orcidid><orcidid>https://orcid.org/0000-0002-7941-7671</orcidid><orcidid>https://orcid.org/0000-0002-7896-303X</orcidid><orcidid>https://orcid.org/0000-0002-4788-8196</orcidid><orcidid>https://orcid.org/0000-0002-9913-0950</orcidid></search><sort><creationdate>2021</creationdate><title>An Efficient Method to Detect Sleep Hypopnea- Apnea Events Based on EEG Signals</title><author>Wang, Yao ; Ji, Siyu ; Yang, Tianshun ; Wang, Xiaohong ; Wang, Huiquan ; Zhao, Xiaoyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-167c53f3508445e98a4b94c78f93998200ee19c7ef4f75561564233f2cd209763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air flow</topic><topic>Algorithms</topic><topic>approximate entropy</topic><topic>Bandpass filters</topic><topic>Blood</topic><topic>Diagnostic systems</topic><topic>Discrete Wavelet Transform</topic><topic>Discrete wavelet transforms</topic><topic>Electroencephalography</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Impulse response</topic><topic>Machine learning</topic><topic>machine learning classification model</topic><topic>Sensitivity</topic><topic>Sleep apnea</topic><topic>Sleep apnea hypopnea syndrome</topic><topic>support vector machine recursive elimination</topic><topic>Support vector machines</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Ji, Siyu</creatorcontrib><creatorcontrib>Yang, Tianshun</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Wang, Huiquan</creatorcontrib><creatorcontrib>Zhao, Xiaoyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yao</au><au>Ji, Siyu</au><au>Yang, Tianshun</au><au>Wang, Xiaohong</au><au>Wang, Huiquan</au><au>Zhao, Xiaoyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Method to Detect Sleep Hypopnea- Apnea Events Based on EEG Signals</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>641</spage><epage>650</epage><pages>641-650</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Hypopnea refers to the state in which insufficient alveolar ventilation during night sleep decreases the respiratory airflow by more than 50% of the airflow. However, sleep apnea is a more serious respiratory event, such as complete cessation of respiratory airflow for 10 seconds. The occurrence of hypopnea is a precursor to the occurrence of apnea events and the two are closely connected. In this paper, we propose a method based on the combination of discrete wavelet transform and approximate entropy of EEG signals to detect sleep apnea and hypopnea events. For this purpose, first, data preprocessing is performed on the EEG record data set obtained from Tianjin Chest Hospital, and then infinite impulse response (IIR) Butterworth bandpass filter is used to decompose the data into delta, theta, alpha, beta and gamma. Second, descriptive features are extracted based on sub-bands discrete wavelet transform such as the approximate entropy of high-frequency coefficients. Third, the features are filtered based on Support Vector Machine (SVM) recursive elimination. Finally, several machine learning algorithms including SVM, K-Nearest Neighbor (KNN) and Random forest (RF) are employed to identify the occurrence of sleep hypopnea-apnea events. The highest accuracy rate reached 94.33%, the sensitivity reached 93.10%, and the specificity reached 95.07%. The obtained results validate that the proposed method is an effective and practical diagnostic method to detect the occurrence of hypopnea-apnea events.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3038486</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0873-7229</orcidid><orcidid>https://orcid.org/0000-0002-0922-6618</orcidid><orcidid>https://orcid.org/0000-0002-7941-7671</orcidid><orcidid>https://orcid.org/0000-0002-7896-303X</orcidid><orcidid>https://orcid.org/0000-0002-4788-8196</orcidid><orcidid>https://orcid.org/0000-0002-9913-0950</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.641-650
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3038486
source DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); IEEE Xplore Open Access Journals
subjects Air flow
Algorithms
approximate entropy
Bandpass filters
Blood
Diagnostic systems
Discrete Wavelet Transform
Discrete wavelet transforms
Electroencephalography
Entropy
Feature extraction
Impulse response
Machine learning
machine learning classification model
Sensitivity
Sleep apnea
Sleep apnea hypopnea syndrome
support vector machine recursive elimination
Support vector machines
Wavelet transforms
title An Efficient Method to Detect Sleep Hypopnea- Apnea Events Based on EEG Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Method%20to%20Detect%20Sleep%20Hypopnea-%20Apnea%20Events%20Based%20on%20EEG%20Signals&rft.jtitle=IEEE%20access&rft.au=Wang,%20Yao&rft.date=2021&rft.volume=9&rft.spage=641&rft.epage=650&rft.pages=641-650&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3038486&rft_dat=%3Cproquest_cross%3E2475960497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475960497&rft_id=info:pmid/&rft_ieee_id=9261412&rft_doaj_id=oai_doaj_org_article_9102a4e24f7e4d15b5aaf5e138d9b3db&rfr_iscdi=true