Optimization and Decomposition Methods in Network Traffic Prediction Model: A Review and Discussion
The 21st century is a high-tech information era in which our lives are closely linked by computer networks. Hence, how to effectively supervise networks and reduce the frequency of network security incidents has now become a research hotspot in cyberspace. Specifically, researchers have shown an inc...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.202858-202871 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202871 |
---|---|
container_issue | |
container_start_page | 202858 |
container_title | IEEE access |
container_volume | 8 |
creator | Shi, Jinmei Leau, Yu-Beng Li, Kun Park, Yong-Jin Yan, Zhiwei |
description | The 21st century is a high-tech information era in which our lives are closely linked by computer networks. Hence, how to effectively supervise networks and reduce the frequency of network security incidents has now become a research hotspot in cyberspace. Specifically, researchers have shown an increased interest in predicting the network traffic before any untoward incident happens. Optimization and decomposition technologies are the core components of network traffic prediction model which plays an important role in network management. This article discusses past network traffic prediction research and critically examines the optimization and decomposition technologies used in the model, lists the model parameter structure based on the research methodology, the data set used, the evaluation criteria and so on. By comparison, digging out the Particle Swarm Optimization (PSO) algorithm and the Variational Mode Decomposition (VMD) decomposition technique will effectively solve the network traffic model predictive difficulties that have proven to be crucial to improving predictive accuracy and convergence speed strategy.The comprehensive review reveals that PSO and VMD are the most suitable optimization algorithm and decomposition technology for network traffic prediction modeling. |
doi_str_mv | 10.1109/ACCESS.2020.3036421 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3036421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9250362</ieee_id><doaj_id>oai_doaj_org_article_93102dab8ebf459dbbf5977445af52fb</doaj_id><sourcerecordid>2460858296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4e3e7d9633e899334dda11e7627c4dd999e4ecacdd3e4705c9d29459733397393</originalsourceid><addsrcrecordid>eNpNkVtPAyEQhYnRxKb2F_iyic-twLAXfGtqvSRqjdVnwsKsUttSYavRXy91jZEHmJyZ8zHJIeSY0RFjVJ6OJ5PpfD7ilNMRUCgEZ3ukx1khh5BDsf-vPiSDGBc0nSpJedkjZrZp3cp96db5dabXNjtH41cbH92Pcovti7cxc-vsDtsPH16zx6CbxpnsPqB1ppvyFpdn2Th7wHeHHx3HRbONMbWPyEGjlxEHv2-fPF1MHydXw5vZ5fVkfDM0glbtUCBgaWUBgJWUAMJazRiWBS9NqqWUKNBoYy2gKGlupOVS5LIEgHRJ6JPrjmu9XqhNcCsdPpXXTv0IPjwrHVpnlqgkMMqtriusm4Swdd0kUClErpucN3VinXSsTfBvW4ytWvhtWKf1FRcFrfKKp037BLopE3yMAZu_XxlVu3BUF47ahaN-w0mu487lEPHPIXme-hy-Ae9oirI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460858296</pqid></control><display><type>article</type><title>Optimization and Decomposition Methods in Network Traffic Prediction Model: A Review and Discussion</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shi, Jinmei ; Leau, Yu-Beng ; Li, Kun ; Park, Yong-Jin ; Yan, Zhiwei</creator><creatorcontrib>Shi, Jinmei ; Leau, Yu-Beng ; Li, Kun ; Park, Yong-Jin ; Yan, Zhiwei</creatorcontrib><description>The 21st century is a high-tech information era in which our lives are closely linked by computer networks. Hence, how to effectively supervise networks and reduce the frequency of network security incidents has now become a research hotspot in cyberspace. Specifically, researchers have shown an increased interest in predicting the network traffic before any untoward incident happens. Optimization and decomposition technologies are the core components of network traffic prediction model which plays an important role in network management. This article discusses past network traffic prediction research and critically examines the optimization and decomposition technologies used in the model, lists the model parameter structure based on the research methodology, the data set used, the evaluation criteria and so on. By comparison, digging out the Particle Swarm Optimization (PSO) algorithm and the Variational Mode Decomposition (VMD) decomposition technique will effectively solve the network traffic model predictive difficulties that have proven to be crucial to improving predictive accuracy and convergence speed strategy.The comprehensive review reveals that PSO and VMD are the most suitable optimization algorithm and decomposition technology for network traffic prediction modeling.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3036421</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Communications traffic ; Computer networks ; Convergence ; Data models ; Decomposition ; Decomposition technology ; Internet ; network traffic prediction ; Optimization ; optimization algorithm ; Particle swarm optimization ; Prediction algorithms ; Prediction models ; Predictive models ; Research methodology ; Security ; Telecommunication traffic ; Traffic models ; variational mode decomposition</subject><ispartof>IEEE access, 2020, Vol.8, p.202858-202871</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4e3e7d9633e899334dda11e7627c4dd999e4ecacdd3e4705c9d29459733397393</citedby><cites>FETCH-LOGICAL-c408t-4e3e7d9633e899334dda11e7627c4dd999e4ecacdd3e4705c9d29459733397393</cites><orcidid>0000-0002-9021-5464 ; 0000-0002-0353-0088 ; 0000-0002-5386-2734 ; 0000-0002-4632-9050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9250362$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Shi, Jinmei</creatorcontrib><creatorcontrib>Leau, Yu-Beng</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Park, Yong-Jin</creatorcontrib><creatorcontrib>Yan, Zhiwei</creatorcontrib><title>Optimization and Decomposition Methods in Network Traffic Prediction Model: A Review and Discussion</title><title>IEEE access</title><addtitle>Access</addtitle><description>The 21st century is a high-tech information era in which our lives are closely linked by computer networks. Hence, how to effectively supervise networks and reduce the frequency of network security incidents has now become a research hotspot in cyberspace. Specifically, researchers have shown an increased interest in predicting the network traffic before any untoward incident happens. Optimization and decomposition technologies are the core components of network traffic prediction model which plays an important role in network management. This article discusses past network traffic prediction research and critically examines the optimization and decomposition technologies used in the model, lists the model parameter structure based on the research methodology, the data set used, the evaluation criteria and so on. By comparison, digging out the Particle Swarm Optimization (PSO) algorithm and the Variational Mode Decomposition (VMD) decomposition technique will effectively solve the network traffic model predictive difficulties that have proven to be crucial to improving predictive accuracy and convergence speed strategy.The comprehensive review reveals that PSO and VMD are the most suitable optimization algorithm and decomposition technology for network traffic prediction modeling.</description><subject>Algorithms</subject><subject>Communications traffic</subject><subject>Computer networks</subject><subject>Convergence</subject><subject>Data models</subject><subject>Decomposition</subject><subject>Decomposition technology</subject><subject>Internet</subject><subject>network traffic prediction</subject><subject>Optimization</subject><subject>optimization algorithm</subject><subject>Particle swarm optimization</subject><subject>Prediction algorithms</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Research methodology</subject><subject>Security</subject><subject>Telecommunication traffic</subject><subject>Traffic models</subject><subject>variational mode decomposition</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtPAyEQhYnRxKb2F_iyic-twLAXfGtqvSRqjdVnwsKsUttSYavRXy91jZEHmJyZ8zHJIeSY0RFjVJ6OJ5PpfD7ilNMRUCgEZ3ukx1khh5BDsf-vPiSDGBc0nSpJedkjZrZp3cp96db5dabXNjtH41cbH92Pcovti7cxc-vsDtsPH16zx6CbxpnsPqB1ppvyFpdn2Th7wHeHHx3HRbONMbWPyEGjlxEHv2-fPF1MHydXw5vZ5fVkfDM0glbtUCBgaWUBgJWUAMJazRiWBS9NqqWUKNBoYy2gKGlupOVS5LIEgHRJ6JPrjmu9XqhNcCsdPpXXTv0IPjwrHVpnlqgkMMqtriusm4Swdd0kUClErpucN3VinXSsTfBvW4ytWvhtWKf1FRcFrfKKp037BLopE3yMAZu_XxlVu3BUF47ahaN-w0mu487lEPHPIXme-hy-Ae9oirI</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Shi, Jinmei</creator><creator>Leau, Yu-Beng</creator><creator>Li, Kun</creator><creator>Park, Yong-Jin</creator><creator>Yan, Zhiwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9021-5464</orcidid><orcidid>https://orcid.org/0000-0002-0353-0088</orcidid><orcidid>https://orcid.org/0000-0002-5386-2734</orcidid><orcidid>https://orcid.org/0000-0002-4632-9050</orcidid></search><sort><creationdate>2020</creationdate><title>Optimization and Decomposition Methods in Network Traffic Prediction Model: A Review and Discussion</title><author>Shi, Jinmei ; Leau, Yu-Beng ; Li, Kun ; Park, Yong-Jin ; Yan, Zhiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4e3e7d9633e899334dda11e7627c4dd999e4ecacdd3e4705c9d29459733397393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Communications traffic</topic><topic>Computer networks</topic><topic>Convergence</topic><topic>Data models</topic><topic>Decomposition</topic><topic>Decomposition technology</topic><topic>Internet</topic><topic>network traffic prediction</topic><topic>Optimization</topic><topic>optimization algorithm</topic><topic>Particle swarm optimization</topic><topic>Prediction algorithms</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Research methodology</topic><topic>Security</topic><topic>Telecommunication traffic</topic><topic>Traffic models</topic><topic>variational mode decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jinmei</creatorcontrib><creatorcontrib>Leau, Yu-Beng</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Park, Yong-Jin</creatorcontrib><creatorcontrib>Yan, Zhiwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jinmei</au><au>Leau, Yu-Beng</au><au>Li, Kun</au><au>Park, Yong-Jin</au><au>Yan, Zhiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization and Decomposition Methods in Network Traffic Prediction Model: A Review and Discussion</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>202858</spage><epage>202871</epage><pages>202858-202871</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The 21st century is a high-tech information era in which our lives are closely linked by computer networks. Hence, how to effectively supervise networks and reduce the frequency of network security incidents has now become a research hotspot in cyberspace. Specifically, researchers have shown an increased interest in predicting the network traffic before any untoward incident happens. Optimization and decomposition technologies are the core components of network traffic prediction model which plays an important role in network management. This article discusses past network traffic prediction research and critically examines the optimization and decomposition technologies used in the model, lists the model parameter structure based on the research methodology, the data set used, the evaluation criteria and so on. By comparison, digging out the Particle Swarm Optimization (PSO) algorithm and the Variational Mode Decomposition (VMD) decomposition technique will effectively solve the network traffic model predictive difficulties that have proven to be crucial to improving predictive accuracy and convergence speed strategy.The comprehensive review reveals that PSO and VMD are the most suitable optimization algorithm and decomposition technology for network traffic prediction modeling.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3036421</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9021-5464</orcidid><orcidid>https://orcid.org/0000-0002-0353-0088</orcidid><orcidid>https://orcid.org/0000-0002-5386-2734</orcidid><orcidid>https://orcid.org/0000-0002-4632-9050</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.202858-202871 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3036421 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Communications traffic Computer networks Convergence Data models Decomposition Decomposition technology Internet network traffic prediction Optimization optimization algorithm Particle swarm optimization Prediction algorithms Prediction models Predictive models Research methodology Security Telecommunication traffic Traffic models variational mode decomposition |
title | Optimization and Decomposition Methods in Network Traffic Prediction Model: A Review and Discussion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20and%20Decomposition%20Methods%20in%20Network%20Traffic%20Prediction%20Model:%20A%20Review%20and%20Discussion&rft.jtitle=IEEE%20access&rft.au=Shi,%20Jinmei&rft.date=2020&rft.volume=8&rft.spage=202858&rft.epage=202871&rft.pages=202858-202871&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3036421&rft_dat=%3Cproquest_cross%3E2460858296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460858296&rft_id=info:pmid/&rft_ieee_id=9250362&rft_doaj_id=oai_doaj_org_article_93102dab8ebf459dbbf5977445af52fb&rfr_iscdi=true |