Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques
This paper surveys the optimization frameworks and performance analysis methods for large intelligent surfaces (LIS), which have been emerging as strong candidates to support the sixth-generation wireless physical platforms (6G). Due to their ability to adjust the behavior of interacting electromagn...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.202795-202818 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202818 |
---|---|
container_issue | |
container_start_page | 202795 |
container_title | IEEE access |
container_volume | 8 |
creator | Alghamdi, Rawan Alhadrami, Reem Alhothali, Dalia Almorad, Heba Faisal, Alice Helal, Sara Shalabi, Rahaf Asfour, Rawan Hammad, Noofa Shams, Asmaa Saeed, Nasir Dahrouj, Hayssam Al-Naffouri, Tareq Y. Alouini, Mohamed-Slim |
description | This paper surveys the optimization frameworks and performance analysis methods for large intelligent surfaces (LIS), which have been emerging as strong candidates to support the sixth-generation wireless physical platforms (6G). Due to their ability to adjust the behavior of interacting electromagnetic (EM) waves through intelligent manipulations of the reflections phase shifts, LIS have shown promising merits at improving the spectral efficiency of wireless networks. In this context, researchers have been recently exploring LIS technology in depth as a means to achieve programmable, virtualized, and distributed wireless network infrastructures. From a system level perspective, LIS have also been proven to be a low-cost, green, sustainable, and energy-efficient solution for 6G systems. This paper provides a unique blend that surveys the principles of operation of LIS, together with their optimization and performance analysis frameworks. The paper first introduces the LIS technology and its physical working principle. Then, it presents various optimization frameworks that aim to optimize specific objectives, namely, maximizing energy efficiency, sum-rate, secrecy-rate, and coverage. The paper afterwards discusses various relevant performance analysis works including capacity analysis, the impact of hardware impairments on capacity, uplink/downlink data rate analysis, and outage probability. The paper further presents the impact of adopting the LIS technology for positioning applications. Finally, we identify numerous exciting open challenges for LIS-aided 6G wireless networks, including resource allocation problems, hybrid radio frequency/visible light communication (RF-VLC) systems, health considerations, and localization. |
doi_str_mv | 10.1109/ACCESS.2020.3031959 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3031959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9229054</ieee_id><doaj_id>oai_doaj_org_article_c0bbe3f2d7ee437c999adcd98a3298fc</doaj_id><sourcerecordid>2460859485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f63c9d9714b1c69e422a163dc56db6307393014a5318b6674b929d718c749cc73</originalsourceid><addsrcrecordid>eNpNUV1rGzEQPEoKDal_QV4Eebajr5Nu82aMmxpMXXBKH4VO2kvlnE-udE5wf33PPRO6L7sMM7MMUxS3jM4Yo3A_XyyW2-2MU05nggoGJXworjlTMBWlUFf_3Z-KSc47Okw1QKW-Ll5WXY9tG56x68n2mBrrMJMmJqIeyc-QsMWcyTfs32J6yQ9kfia94onEhmwOfdiHP7YPsSO28-Q7pkG5t51DMu9se8ohkyd0v7rw-4j5c_GxsW3GyWXfFD--LJ8WX6frzeNqMV9PnaRVP22UcOBBM1kzpwAl55Yp4V2pfK0E1QIEZdKWglW1UlrWwMFrVjktwTktborV6Ouj3ZlDCnubTibaYP4BMT0bm_rgWjSO1jWKhnuNKIV2AGC981BZwaFq3OB1N3odUjxn6M0uHtOQLRsuFa1KkFU5sMTIcinmnLB5_8qoOZdkxpLMuSRzKWlQ3Y6qgIjvCuAcaCnFX6LbjY4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460859485</pqid></control><display><type>article</type><title>Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Alghamdi, Rawan ; Alhadrami, Reem ; Alhothali, Dalia ; Almorad, Heba ; Faisal, Alice ; Helal, Sara ; Shalabi, Rahaf ; Asfour, Rawan ; Hammad, Noofa ; Shams, Asmaa ; Saeed, Nasir ; Dahrouj, Hayssam ; Al-Naffouri, Tareq Y. ; Alouini, Mohamed-Slim</creator><creatorcontrib>Alghamdi, Rawan ; Alhadrami, Reem ; Alhothali, Dalia ; Almorad, Heba ; Faisal, Alice ; Helal, Sara ; Shalabi, Rahaf ; Asfour, Rawan ; Hammad, Noofa ; Shams, Asmaa ; Saeed, Nasir ; Dahrouj, Hayssam ; Al-Naffouri, Tareq Y. ; Alouini, Mohamed-Slim</creatorcontrib><description>This paper surveys the optimization frameworks and performance analysis methods for large intelligent surfaces (LIS), which have been emerging as strong candidates to support the sixth-generation wireless physical platforms (6G). Due to their ability to adjust the behavior of interacting electromagnetic (EM) waves through intelligent manipulations of the reflections phase shifts, LIS have shown promising merits at improving the spectral efficiency of wireless networks. In this context, researchers have been recently exploring LIS technology in depth as a means to achieve programmable, virtualized, and distributed wireless network infrastructures. From a system level perspective, LIS have also been proven to be a low-cost, green, sustainable, and energy-efficient solution for 6G systems. This paper provides a unique blend that surveys the principles of operation of LIS, together with their optimization and performance analysis frameworks. The paper first introduces the LIS technology and its physical working principle. Then, it presents various optimization frameworks that aim to optimize specific objectives, namely, maximizing energy efficiency, sum-rate, secrecy-rate, and coverage. The paper afterwards discusses various relevant performance analysis works including capacity analysis, the impact of hardware impairments on capacity, uplink/downlink data rate analysis, and outage probability. The paper further presents the impact of adopting the LIS technology for positioning applications. Finally, we identify numerous exciting open challenges for LIS-aided 6G wireless networks, including resource allocation problems, hybrid radio frequency/visible light communication (RF-VLC) systems, health considerations, and localization.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3031959</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>6G mobile communication ; 6G technology ; Clean energy ; Energy efficiency ; Impact analysis ; large intelligent surfaces (LIS) ; massive multiple-input multiple-output (mMIMO) ; millimetre waves (mmWave) communication ; Optical communication ; Optimization ; Performance analysis ; Radio frequency ; Resource allocation ; Surface waves ; wireless communication ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE access, 2020, Vol.8, p.202795-202818</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f63c9d9714b1c69e422a163dc56db6307393014a5318b6674b929d718c749cc73</citedby><cites>FETCH-LOGICAL-c408t-f63c9d9714b1c69e422a163dc56db6307393014a5318b6674b929d718c749cc73</cites><orcidid>0000-0001-6955-4720 ; 0000-0002-0737-6372 ; 0000-0003-4827-1793 ; 0000-0002-3006-5951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9229054$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Alghamdi, Rawan</creatorcontrib><creatorcontrib>Alhadrami, Reem</creatorcontrib><creatorcontrib>Alhothali, Dalia</creatorcontrib><creatorcontrib>Almorad, Heba</creatorcontrib><creatorcontrib>Faisal, Alice</creatorcontrib><creatorcontrib>Helal, Sara</creatorcontrib><creatorcontrib>Shalabi, Rahaf</creatorcontrib><creatorcontrib>Asfour, Rawan</creatorcontrib><creatorcontrib>Hammad, Noofa</creatorcontrib><creatorcontrib>Shams, Asmaa</creatorcontrib><creatorcontrib>Saeed, Nasir</creatorcontrib><creatorcontrib>Dahrouj, Hayssam</creatorcontrib><creatorcontrib>Al-Naffouri, Tareq Y.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><title>Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper surveys the optimization frameworks and performance analysis methods for large intelligent surfaces (LIS), which have been emerging as strong candidates to support the sixth-generation wireless physical platforms (6G). Due to their ability to adjust the behavior of interacting electromagnetic (EM) waves through intelligent manipulations of the reflections phase shifts, LIS have shown promising merits at improving the spectral efficiency of wireless networks. In this context, researchers have been recently exploring LIS technology in depth as a means to achieve programmable, virtualized, and distributed wireless network infrastructures. From a system level perspective, LIS have also been proven to be a low-cost, green, sustainable, and energy-efficient solution for 6G systems. This paper provides a unique blend that surveys the principles of operation of LIS, together with their optimization and performance analysis frameworks. The paper first introduces the LIS technology and its physical working principle. Then, it presents various optimization frameworks that aim to optimize specific objectives, namely, maximizing energy efficiency, sum-rate, secrecy-rate, and coverage. The paper afterwards discusses various relevant performance analysis works including capacity analysis, the impact of hardware impairments on capacity, uplink/downlink data rate analysis, and outage probability. The paper further presents the impact of adopting the LIS technology for positioning applications. Finally, we identify numerous exciting open challenges for LIS-aided 6G wireless networks, including resource allocation problems, hybrid radio frequency/visible light communication (RF-VLC) systems, health considerations, and localization.</description><subject>6G mobile communication</subject><subject>6G technology</subject><subject>Clean energy</subject><subject>Energy efficiency</subject><subject>Impact analysis</subject><subject>large intelligent surfaces (LIS)</subject><subject>massive multiple-input multiple-output (mMIMO)</subject><subject>millimetre waves (mmWave) communication</subject><subject>Optical communication</subject><subject>Optimization</subject><subject>Performance analysis</subject><subject>Radio frequency</subject><subject>Resource allocation</subject><subject>Surface waves</subject><subject>wireless communication</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQPEoKDal_QV4Eebajr5Nu82aMmxpMXXBKH4VO2kvlnE-udE5wf33PPRO6L7sMM7MMUxS3jM4Yo3A_XyyW2-2MU05nggoGJXworjlTMBWlUFf_3Z-KSc47Okw1QKW-Ll5WXY9tG56x68n2mBrrMJMmJqIeyc-QsMWcyTfs32J6yQ9kfia94onEhmwOfdiHP7YPsSO28-Q7pkG5t51DMu9se8ohkyd0v7rw-4j5c_GxsW3GyWXfFD--LJ8WX6frzeNqMV9PnaRVP22UcOBBM1kzpwAl55Yp4V2pfK0E1QIEZdKWglW1UlrWwMFrVjktwTktborV6Ouj3ZlDCnubTibaYP4BMT0bm_rgWjSO1jWKhnuNKIV2AGC981BZwaFq3OB1N3odUjxn6M0uHtOQLRsuFa1KkFU5sMTIcinmnLB5_8qoOZdkxpLMuSRzKWlQ3Y6qgIjvCuAcaCnFX6LbjY4</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Alghamdi, Rawan</creator><creator>Alhadrami, Reem</creator><creator>Alhothali, Dalia</creator><creator>Almorad, Heba</creator><creator>Faisal, Alice</creator><creator>Helal, Sara</creator><creator>Shalabi, Rahaf</creator><creator>Asfour, Rawan</creator><creator>Hammad, Noofa</creator><creator>Shams, Asmaa</creator><creator>Saeed, Nasir</creator><creator>Dahrouj, Hayssam</creator><creator>Al-Naffouri, Tareq Y.</creator><creator>Alouini, Mohamed-Slim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6955-4720</orcidid><orcidid>https://orcid.org/0000-0002-0737-6372</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0002-3006-5951</orcidid></search><sort><creationdate>2020</creationdate><title>Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques</title><author>Alghamdi, Rawan ; Alhadrami, Reem ; Alhothali, Dalia ; Almorad, Heba ; Faisal, Alice ; Helal, Sara ; Shalabi, Rahaf ; Asfour, Rawan ; Hammad, Noofa ; Shams, Asmaa ; Saeed, Nasir ; Dahrouj, Hayssam ; Al-Naffouri, Tareq Y. ; Alouini, Mohamed-Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f63c9d9714b1c69e422a163dc56db6307393014a5318b6674b929d718c749cc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>6G mobile communication</topic><topic>6G technology</topic><topic>Clean energy</topic><topic>Energy efficiency</topic><topic>Impact analysis</topic><topic>large intelligent surfaces (LIS)</topic><topic>massive multiple-input multiple-output (mMIMO)</topic><topic>millimetre waves (mmWave) communication</topic><topic>Optical communication</topic><topic>Optimization</topic><topic>Performance analysis</topic><topic>Radio frequency</topic><topic>Resource allocation</topic><topic>Surface waves</topic><topic>wireless communication</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alghamdi, Rawan</creatorcontrib><creatorcontrib>Alhadrami, Reem</creatorcontrib><creatorcontrib>Alhothali, Dalia</creatorcontrib><creatorcontrib>Almorad, Heba</creatorcontrib><creatorcontrib>Faisal, Alice</creatorcontrib><creatorcontrib>Helal, Sara</creatorcontrib><creatorcontrib>Shalabi, Rahaf</creatorcontrib><creatorcontrib>Asfour, Rawan</creatorcontrib><creatorcontrib>Hammad, Noofa</creatorcontrib><creatorcontrib>Shams, Asmaa</creatorcontrib><creatorcontrib>Saeed, Nasir</creatorcontrib><creatorcontrib>Dahrouj, Hayssam</creatorcontrib><creatorcontrib>Al-Naffouri, Tareq Y.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alghamdi, Rawan</au><au>Alhadrami, Reem</au><au>Alhothali, Dalia</au><au>Almorad, Heba</au><au>Faisal, Alice</au><au>Helal, Sara</au><au>Shalabi, Rahaf</au><au>Asfour, Rawan</au><au>Hammad, Noofa</au><au>Shams, Asmaa</au><au>Saeed, Nasir</au><au>Dahrouj, Hayssam</au><au>Al-Naffouri, Tareq Y.</au><au>Alouini, Mohamed-Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>202795</spage><epage>202818</epage><pages>202795-202818</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper surveys the optimization frameworks and performance analysis methods for large intelligent surfaces (LIS), which have been emerging as strong candidates to support the sixth-generation wireless physical platforms (6G). Due to their ability to adjust the behavior of interacting electromagnetic (EM) waves through intelligent manipulations of the reflections phase shifts, LIS have shown promising merits at improving the spectral efficiency of wireless networks. In this context, researchers have been recently exploring LIS technology in depth as a means to achieve programmable, virtualized, and distributed wireless network infrastructures. From a system level perspective, LIS have also been proven to be a low-cost, green, sustainable, and energy-efficient solution for 6G systems. This paper provides a unique blend that surveys the principles of operation of LIS, together with their optimization and performance analysis frameworks. The paper first introduces the LIS technology and its physical working principle. Then, it presents various optimization frameworks that aim to optimize specific objectives, namely, maximizing energy efficiency, sum-rate, secrecy-rate, and coverage. The paper afterwards discusses various relevant performance analysis works including capacity analysis, the impact of hardware impairments on capacity, uplink/downlink data rate analysis, and outage probability. The paper further presents the impact of adopting the LIS technology for positioning applications. Finally, we identify numerous exciting open challenges for LIS-aided 6G wireless networks, including resource allocation problems, hybrid radio frequency/visible light communication (RF-VLC) systems, health considerations, and localization.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3031959</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6955-4720</orcidid><orcidid>https://orcid.org/0000-0002-0737-6372</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0002-3006-5951</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.202795-202818 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3031959 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 6G mobile communication 6G technology Clean energy Energy efficiency Impact analysis large intelligent surfaces (LIS) massive multiple-input multiple-output (mMIMO) millimetre waves (mmWave) communication Optical communication Optimization Performance analysis Radio frequency Resource allocation Surface waves wireless communication Wireless networks Wireless sensor networks |
title | Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Surfaces%20for%206G%20Wireless%20Networks:%20A%20Survey%20of%20Optimization%20and%20Performance%20Analysis%20Techniques&rft.jtitle=IEEE%20access&rft.au=Alghamdi,%20Rawan&rft.date=2020&rft.volume=8&rft.spage=202795&rft.epage=202818&rft.pages=202795-202818&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3031959&rft_dat=%3Cproquest_cross%3E2460859485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460859485&rft_id=info:pmid/&rft_ieee_id=9229054&rft_doaj_id=oai_doaj_org_article_c0bbe3f2d7ee437c999adcd98a3298fc&rfr_iscdi=true |