U-Net Convolutional Networks for Mining Land Cover Classification Based on High-Resolution UAV Imagery

Mining activities are the leading cause of deforestation, land-use changes, and pollution. Land use/cover mapping in Vietnam every five years is not useful to monitor land covers in mining areas, especially in the Central Highland region. It is necessary to equip managers with a better tool to monit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.186257-186273
Hauptverfasser: Giang, Tuan Linh, Dang, Kinh Bac, Toan Le, Quang, Nguyen, Vu Giang, Tong, Si Son, Pham, Van-Manh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186273
container_issue
container_start_page 186257
container_title IEEE access
container_volume 8
creator Giang, Tuan Linh
Dang, Kinh Bac
Toan Le, Quang
Nguyen, Vu Giang
Tong, Si Son
Pham, Van-Manh
description Mining activities are the leading cause of deforestation, land-use changes, and pollution. Land use/cover mapping in Vietnam every five years is not useful to monitor land covers in mining areas, especially in the Central Highland region. It is necessary to equip managers with a better tool to monitor and map land cover using high-resolution images. Therefore, the authors proposed using the U-Net convolutional network for land-cover classification based on multispectral Unmanned aerial vehicle (UAV) image in a mining area of Daknong province, Vietnam. An area of 0.5kmx0.8km was used for training and testing seven U-Net models using seven optimizer function types. The final U-Net model can interpret six land cover types: (1) open-case mining lands, (2) old permanent croplands, (3) young permanent croplands, (4) grasslands, (5) bare soils, (6) water bodies. As a result, two models using Nadam and Adadelta optimizer function can be used to classify six land cover types with accuracy higher than 83%, especially in open-case mining lands and polluted streams flowed out from the mining areas. The trained U-Net models can potentially update new land cover types in other mining areas towards monitoring land cover changes in real-time in the future.
doi_str_mv 10.1109/ACCESS.2020.3030112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3030112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9220104</ieee_id><doaj_id>oai_doaj_org_article_04f115427fd947a9863e1a4a2b529eca</doaj_id><sourcerecordid>2453817499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2bd329b80866eab39abd55c6c4f650693d84a58fe6aab08ec531ffe74aa01a783</originalsourceid><addsrcrecordid>eNpNUV1v1DAQjBBIVKW_oC-WeM7h79iPR1ToSQdIlOPV2iTrw0caFzvXqv8eHzlV7MuORjOz0k5VXTO6YozaD-u2vbm7W3HK6UpQQRnjr6oLzrSthRL69X_4bXWV84GWMYVSzUXld_VXnEkbp8c4HucQJxhJYZ5i-p2Jj4l8CVOY9mQL01Bkj5hIO0LOwYceTnryETIOpIDbsP9Vf8d8DiK79U-yuYc9pud31RsPY8ar876sdp9ufrS39fbb50273ta9bORc824Q3HaGGq0ROmGhG5TqdS-9VlRbMRgJynjUAB012CvBvMdGAlAGjRGX1WbJHSIc3EMK95CeXYTg_hEx7R2kOfQjOio9Y0ryxg9WNmCNFshAAu8Ut9hDyXq_ZD2k-OeIeXaHeEzlP9lxqYRhjbS2qMSi6lPMOaF_ucqoO_Xjln7cqR937qe4rhdXQMQXh-WcMirFXzXHi2A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453817499</pqid></control><display><type>article</type><title>U-Net Convolutional Networks for Mining Land Cover Classification Based on High-Resolution UAV Imagery</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Giang, Tuan Linh ; Dang, Kinh Bac ; Toan Le, Quang ; Nguyen, Vu Giang ; Tong, Si Son ; Pham, Van-Manh</creator><creatorcontrib>Giang, Tuan Linh ; Dang, Kinh Bac ; Toan Le, Quang ; Nguyen, Vu Giang ; Tong, Si Son ; Pham, Van-Manh</creatorcontrib><description>Mining activities are the leading cause of deforestation, land-use changes, and pollution. Land use/cover mapping in Vietnam every five years is not useful to monitor land covers in mining areas, especially in the Central Highland region. It is necessary to equip managers with a better tool to monitor and map land cover using high-resolution images. Therefore, the authors proposed using the U-Net convolutional network for land-cover classification based on multispectral Unmanned aerial vehicle (UAV) image in a mining area of Daknong province, Vietnam. An area of 0.5kmx0.8km was used for training and testing seven U-Net models using seven optimizer function types. The final U-Net model can interpret six land cover types: (1) open-case mining lands, (2) old permanent croplands, (3) young permanent croplands, (4) grasslands, (5) bare soils, (6) water bodies. As a result, two models using Nadam and Adadelta optimizer function can be used to classify six land cover types with accuracy higher than 83%, especially in open-case mining lands and polluted streams flowed out from the mining areas. The trained U-Net models can potentially update new land cover types in other mining areas towards monitoring land cover changes in real-time in the future.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3030112</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Daknong ; Data mining ; Deep learning ; Deforestation ; Grasslands ; High resolution ; Image classification ; Image resolution ; Land cover ; Land use ; loss function ; Monitoring ; open-cast mining ; optimization ; permanent cropland ; Real-time systems ; segmentation ; Soil ; Soil water ; U-Net convolutional network ; unmanned aerial vehicle ; Unmanned aerial vehicles ; Water pollution</subject><ispartof>IEEE access, 2020, Vol.8, p.186257-186273</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2bd329b80866eab39abd55c6c4f650693d84a58fe6aab08ec531ffe74aa01a783</citedby><cites>FETCH-LOGICAL-c474t-2bd329b80866eab39abd55c6c4f650693d84a58fe6aab08ec531ffe74aa01a783</cites><orcidid>0000-0002-8329-3181 ; 0000-0003-0006-0727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9220104$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Giang, Tuan Linh</creatorcontrib><creatorcontrib>Dang, Kinh Bac</creatorcontrib><creatorcontrib>Toan Le, Quang</creatorcontrib><creatorcontrib>Nguyen, Vu Giang</creatorcontrib><creatorcontrib>Tong, Si Son</creatorcontrib><creatorcontrib>Pham, Van-Manh</creatorcontrib><title>U-Net Convolutional Networks for Mining Land Cover Classification Based on High-Resolution UAV Imagery</title><title>IEEE access</title><addtitle>Access</addtitle><description>Mining activities are the leading cause of deforestation, land-use changes, and pollution. Land use/cover mapping in Vietnam every five years is not useful to monitor land covers in mining areas, especially in the Central Highland region. It is necessary to equip managers with a better tool to monitor and map land cover using high-resolution images. Therefore, the authors proposed using the U-Net convolutional network for land-cover classification based on multispectral Unmanned aerial vehicle (UAV) image in a mining area of Daknong province, Vietnam. An area of 0.5kmx0.8km was used for training and testing seven U-Net models using seven optimizer function types. The final U-Net model can interpret six land cover types: (1) open-case mining lands, (2) old permanent croplands, (3) young permanent croplands, (4) grasslands, (5) bare soils, (6) water bodies. As a result, two models using Nadam and Adadelta optimizer function can be used to classify six land cover types with accuracy higher than 83%, especially in open-case mining lands and polluted streams flowed out from the mining areas. The trained U-Net models can potentially update new land cover types in other mining areas towards monitoring land cover changes in real-time in the future.</description><subject>Computational modeling</subject><subject>Daknong</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Deforestation</subject><subject>Grasslands</subject><subject>High resolution</subject><subject>Image classification</subject><subject>Image resolution</subject><subject>Land cover</subject><subject>Land use</subject><subject>loss function</subject><subject>Monitoring</subject><subject>open-cast mining</subject><subject>optimization</subject><subject>permanent cropland</subject><subject>Real-time systems</subject><subject>segmentation</subject><subject>Soil</subject><subject>Soil water</subject><subject>U-Net convolutional network</subject><subject>unmanned aerial vehicle</subject><subject>Unmanned aerial vehicles</subject><subject>Water pollution</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1v1DAQjBBIVKW_oC-WeM7h79iPR1ToSQdIlOPV2iTrw0caFzvXqv8eHzlV7MuORjOz0k5VXTO6YozaD-u2vbm7W3HK6UpQQRnjr6oLzrSthRL69X_4bXWV84GWMYVSzUXld_VXnEkbp8c4HucQJxhJYZ5i-p2Jj4l8CVOY9mQL01Bkj5hIO0LOwYceTnryETIOpIDbsP9Vf8d8DiK79U-yuYc9pud31RsPY8ar876sdp9ufrS39fbb50273ta9bORc824Q3HaGGq0ROmGhG5TqdS-9VlRbMRgJynjUAB012CvBvMdGAlAGjRGX1WbJHSIc3EMK95CeXYTg_hEx7R2kOfQjOio9Y0ryxg9WNmCNFshAAu8Ut9hDyXq_ZD2k-OeIeXaHeEzlP9lxqYRhjbS2qMSi6lPMOaF_ucqoO_Xjln7cqR937qe4rhdXQMQXh-WcMirFXzXHi2A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Giang, Tuan Linh</creator><creator>Dang, Kinh Bac</creator><creator>Toan Le, Quang</creator><creator>Nguyen, Vu Giang</creator><creator>Tong, Si Son</creator><creator>Pham, Van-Manh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8329-3181</orcidid><orcidid>https://orcid.org/0000-0003-0006-0727</orcidid></search><sort><creationdate>2020</creationdate><title>U-Net Convolutional Networks for Mining Land Cover Classification Based on High-Resolution UAV Imagery</title><author>Giang, Tuan Linh ; Dang, Kinh Bac ; Toan Le, Quang ; Nguyen, Vu Giang ; Tong, Si Son ; Pham, Van-Manh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2bd329b80866eab39abd55c6c4f650693d84a58fe6aab08ec531ffe74aa01a783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational modeling</topic><topic>Daknong</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Deforestation</topic><topic>Grasslands</topic><topic>High resolution</topic><topic>Image classification</topic><topic>Image resolution</topic><topic>Land cover</topic><topic>Land use</topic><topic>loss function</topic><topic>Monitoring</topic><topic>open-cast mining</topic><topic>optimization</topic><topic>permanent cropland</topic><topic>Real-time systems</topic><topic>segmentation</topic><topic>Soil</topic><topic>Soil water</topic><topic>U-Net convolutional network</topic><topic>unmanned aerial vehicle</topic><topic>Unmanned aerial vehicles</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giang, Tuan Linh</creatorcontrib><creatorcontrib>Dang, Kinh Bac</creatorcontrib><creatorcontrib>Toan Le, Quang</creatorcontrib><creatorcontrib>Nguyen, Vu Giang</creatorcontrib><creatorcontrib>Tong, Si Son</creatorcontrib><creatorcontrib>Pham, Van-Manh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giang, Tuan Linh</au><au>Dang, Kinh Bac</au><au>Toan Le, Quang</au><au>Nguyen, Vu Giang</au><au>Tong, Si Son</au><au>Pham, Van-Manh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>U-Net Convolutional Networks for Mining Land Cover Classification Based on High-Resolution UAV Imagery</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>186257</spage><epage>186273</epage><pages>186257-186273</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Mining activities are the leading cause of deforestation, land-use changes, and pollution. Land use/cover mapping in Vietnam every five years is not useful to monitor land covers in mining areas, especially in the Central Highland region. It is necessary to equip managers with a better tool to monitor and map land cover using high-resolution images. Therefore, the authors proposed using the U-Net convolutional network for land-cover classification based on multispectral Unmanned aerial vehicle (UAV) image in a mining area of Daknong province, Vietnam. An area of 0.5kmx0.8km was used for training and testing seven U-Net models using seven optimizer function types. The final U-Net model can interpret six land cover types: (1) open-case mining lands, (2) old permanent croplands, (3) young permanent croplands, (4) grasslands, (5) bare soils, (6) water bodies. As a result, two models using Nadam and Adadelta optimizer function can be used to classify six land cover types with accuracy higher than 83%, especially in open-case mining lands and polluted streams flowed out from the mining areas. The trained U-Net models can potentially update new land cover types in other mining areas towards monitoring land cover changes in real-time in the future.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3030112</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8329-3181</orcidid><orcidid>https://orcid.org/0000-0003-0006-0727</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.186257-186273
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3030112
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computational modeling
Daknong
Data mining
Deep learning
Deforestation
Grasslands
High resolution
Image classification
Image resolution
Land cover
Land use
loss function
Monitoring
open-cast mining
optimization
permanent cropland
Real-time systems
segmentation
Soil
Soil water
U-Net convolutional network
unmanned aerial vehicle
Unmanned aerial vehicles
Water pollution
title U-Net Convolutional Networks for Mining Land Cover Classification Based on High-Resolution UAV Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=U-Net%20Convolutional%20Networks%20for%20Mining%20Land%20Cover%20Classification%20Based%20on%20High-Resolution%20UAV%20Imagery&rft.jtitle=IEEE%20access&rft.au=Giang,%20Tuan%20Linh&rft.date=2020&rft.volume=8&rft.spage=186257&rft.epage=186273&rft.pages=186257-186273&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3030112&rft_dat=%3Cproquest_cross%3E2453817499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453817499&rft_id=info:pmid/&rft_ieee_id=9220104&rft_doaj_id=oai_doaj_org_article_04f115427fd947a9863e1a4a2b529eca&rfr_iscdi=true