Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos

The performance of object detection methods plays an important role in the recognition of surgical tools, and is a key link in the automated evaluation of surgical skills. In this paper, we propose a novel framework for one-stage object detection based on a sample adaptive process controlled by rein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.181723-181732
Hauptverfasser: Wang, Guangyao, Wang, Shengsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181732
container_issue
container_start_page 181723
container_title IEEE access
container_volume 8
creator Wang, Guangyao
Wang, Shengsheng
description The performance of object detection methods plays an important role in the recognition of surgical tools, and is a key link in the automated evaluation of surgical skills. In this paper, we propose a novel framework for one-stage object detection based on a sample adaptive process controlled by reinforcement learning, which can maintain the speed advantage while maintaining higher accuracy than two-stage object detection methods. We use m2cai16-tool-locations and AJU-Set, two datasets covering seven surgical tools with spatial information collected from hospital gallbladder surgery videos to evaluate and verify the effectiveness of our proposed framework. The experiments show that our proposed framework can make the one-stage object detection method achieve 70.1% and 77.3% accuracy on m2cai16-tool-locations and AJU-Set, respectively. We further validated the effectiveness of our proposed framework by analyzing the usage patterns, motion trajectories, and mobile values of surgical tools.
doi_str_mv 10.1109/ACCESS.2020.3028910
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3028910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9214412</ieee_id><doaj_id>oai_doaj_org_article_5e7d65aaf4704b898fbfdbb5c3f71929</doaj_id><sourcerecordid>2454678466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-78d21069afe748e1335c7546307e4aa0606621f40b69c949c21464ef7b862a873</originalsourceid><addsrcrecordid>eNpNUctq5DAQNEsCG7L5glwMe56JXtbjOJk8NjCwB0_2Ktpya9DgWI7kOeTvo8QhbF-6Kaqqu6mquqZkTSkxN5vt9r5t14wwsuaEaUPJj-qCUWlWvOHy7L_5Z3WV85GU0gVq1EXVtqd0CA6Geh_jkOs7nNHNIY71LWTs6zLsE4QxjIe6hZdpwHrTwzTDJyeM9Q4mSDG7OAVX_ws9xvyrOvcwZLz66pfV88P9fvtntfv7-LTd7FZONHpeKd0zSqQBj0popJw3TjVCcqJQABBJpGTUC9JJ44wwjlEhBXrVaclAK35ZPS2-fYSjnVJ4gfRmIwT7CcR0sJDm4Aa0DapeNgBeKCI6bbTvfN91jeNeUcNM8fq9eE0pvp4wz_YYT2ks51smylFKCykLiy8sV17OCf33VkrsRxh2CcN-hGG_wiiq60UVEPFbYco7gjL-Dtn5g80</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678466</pqid></control><display><type>article</type><title>Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Guangyao ; Wang, Shengsheng</creator><creatorcontrib>Wang, Guangyao ; Wang, Shengsheng</creatorcontrib><description>The performance of object detection methods plays an important role in the recognition of surgical tools, and is a key link in the automated evaluation of surgical skills. In this paper, we propose a novel framework for one-stage object detection based on a sample adaptive process controlled by reinforcement learning, which can maintain the speed advantage while maintaining higher accuracy than two-stage object detection methods. We use m2cai16-tool-locations and AJU-Set, two datasets covering seven surgical tools with spatial information collected from hospital gallbladder surgery videos to evaluate and verify the effectiveness of our proposed framework. The experiments show that our proposed framework can make the one-stage object detection method achieve 70.1% and 77.3% accuracy on m2cai16-tool-locations and AJU-Set, respectively. We further validated the effectiveness of our proposed framework by analyzing the usage patterns, motion trajectories, and mobile values of surgical tools.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3028910</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive sampling ; Gallbladder ; Hidden Markov models ; Laparoscopic surgery ; Learning (artificial intelligence) ; Object detection ; Object recognition ; reinforcement learning ; Spatial data ; Surgery ; Surgical apparatus &amp; instruments ; Surgical instruments ; Training ; Video ; Videos</subject><ispartof>IEEE access, 2020, Vol.8, p.181723-181732</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-78d21069afe748e1335c7546307e4aa0606621f40b69c949c21464ef7b862a873</citedby><cites>FETCH-LOGICAL-c458t-78d21069afe748e1335c7546307e4aa0606621f40b69c949c21464ef7b862a873</cites><orcidid>0000-0002-8503-8061 ; 0000-0002-8012-7639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9214412$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Guangyao</creatorcontrib><creatorcontrib>Wang, Shengsheng</creatorcontrib><title>Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos</title><title>IEEE access</title><addtitle>Access</addtitle><description>The performance of object detection methods plays an important role in the recognition of surgical tools, and is a key link in the automated evaluation of surgical skills. In this paper, we propose a novel framework for one-stage object detection based on a sample adaptive process controlled by reinforcement learning, which can maintain the speed advantage while maintaining higher accuracy than two-stage object detection methods. We use m2cai16-tool-locations and AJU-Set, two datasets covering seven surgical tools with spatial information collected from hospital gallbladder surgery videos to evaluate and verify the effectiveness of our proposed framework. The experiments show that our proposed framework can make the one-stage object detection method achieve 70.1% and 77.3% accuracy on m2cai16-tool-locations and AJU-Set, respectively. We further validated the effectiveness of our proposed framework by analyzing the usage patterns, motion trajectories, and mobile values of surgical tools.</description><subject>Adaptive sampling</subject><subject>Gallbladder</subject><subject>Hidden Markov models</subject><subject>Laparoscopic surgery</subject><subject>Learning (artificial intelligence)</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>reinforcement learning</subject><subject>Spatial data</subject><subject>Surgery</subject><subject>Surgical apparatus &amp; instruments</subject><subject>Surgical instruments</subject><subject>Training</subject><subject>Video</subject><subject>Videos</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctq5DAQNEsCG7L5glwMe56JXtbjOJk8NjCwB0_2Ktpya9DgWI7kOeTvo8QhbF-6Kaqqu6mquqZkTSkxN5vt9r5t14wwsuaEaUPJj-qCUWlWvOHy7L_5Z3WV85GU0gVq1EXVtqd0CA6Geh_jkOs7nNHNIY71LWTs6zLsE4QxjIe6hZdpwHrTwzTDJyeM9Q4mSDG7OAVX_ws9xvyrOvcwZLz66pfV88P9fvtntfv7-LTd7FZONHpeKd0zSqQBj0popJw3TjVCcqJQABBJpGTUC9JJ44wwjlEhBXrVaclAK35ZPS2-fYSjnVJ4gfRmIwT7CcR0sJDm4Aa0DapeNgBeKCI6bbTvfN91jeNeUcNM8fq9eE0pvp4wz_YYT2ks51smylFKCykLiy8sV17OCf33VkrsRxh2CcN-hGG_wiiq60UVEPFbYco7gjL-Dtn5g80</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Guangyao</creator><creator>Wang, Shengsheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8503-8061</orcidid><orcidid>https://orcid.org/0000-0002-8012-7639</orcidid></search><sort><creationdate>2020</creationdate><title>Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos</title><author>Wang, Guangyao ; Wang, Shengsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-78d21069afe748e1335c7546307e4aa0606621f40b69c949c21464ef7b862a873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive sampling</topic><topic>Gallbladder</topic><topic>Hidden Markov models</topic><topic>Laparoscopic surgery</topic><topic>Learning (artificial intelligence)</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>reinforcement learning</topic><topic>Spatial data</topic><topic>Surgery</topic><topic>Surgical apparatus &amp; instruments</topic><topic>Surgical instruments</topic><topic>Training</topic><topic>Video</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guangyao</creatorcontrib><creatorcontrib>Wang, Shengsheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guangyao</au><au>Wang, Shengsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>181723</spage><epage>181732</epage><pages>181723-181732</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The performance of object detection methods plays an important role in the recognition of surgical tools, and is a key link in the automated evaluation of surgical skills. In this paper, we propose a novel framework for one-stage object detection based on a sample adaptive process controlled by reinforcement learning, which can maintain the speed advantage while maintaining higher accuracy than two-stage object detection methods. We use m2cai16-tool-locations and AJU-Set, two datasets covering seven surgical tools with spatial information collected from hospital gallbladder surgery videos to evaluate and verify the effectiveness of our proposed framework. The experiments show that our proposed framework can make the one-stage object detection method achieve 70.1% and 77.3% accuracy on m2cai16-tool-locations and AJU-Set, respectively. We further validated the effectiveness of our proposed framework by analyzing the usage patterns, motion trajectories, and mobile values of surgical tools.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3028910</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8503-8061</orcidid><orcidid>https://orcid.org/0000-0002-8012-7639</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.181723-181732
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3028910
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive sampling
Gallbladder
Hidden Markov models
Laparoscopic surgery
Learning (artificial intelligence)
Object detection
Object recognition
reinforcement learning
Spatial data
Surgery
Surgical apparatus & instruments
Surgical instruments
Training
Video
Videos
title Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surgical%20Tools%20Detection%20Based%20on%20Training%20Sample%20Adaptation%20in%20Laparoscopic%20Videos&rft.jtitle=IEEE%20access&rft.au=Wang,%20Guangyao&rft.date=2020&rft.volume=8&rft.spage=181723&rft.epage=181732&rft.pages=181723-181732&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3028910&rft_dat=%3Cproquest_cross%3E2454678466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454678466&rft_id=info:pmid/&rft_ieee_id=9214412&rft_doaj_id=oai_doaj_org_article_5e7d65aaf4704b898fbfdbb5c3f71929&rfr_iscdi=true