Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos
The performance of object detection methods plays an important role in the recognition of surgical tools, and is a key link in the automated evaluation of surgical skills. In this paper, we propose a novel framework for one-stage object detection based on a sample adaptive process controlled by rein...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.181723-181732 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181732 |
---|---|
container_issue | |
container_start_page | 181723 |
container_title | IEEE access |
container_volume | 8 |
creator | Wang, Guangyao Wang, Shengsheng |
description | The performance of object detection methods plays an important role in the recognition of surgical tools, and is a key link in the automated evaluation of surgical skills. In this paper, we propose a novel framework for one-stage object detection based on a sample adaptive process controlled by reinforcement learning, which can maintain the speed advantage while maintaining higher accuracy than two-stage object detection methods. We use m2cai16-tool-locations and AJU-Set, two datasets covering seven surgical tools with spatial information collected from hospital gallbladder surgery videos to evaluate and verify the effectiveness of our proposed framework. The experiments show that our proposed framework can make the one-stage object detection method achieve 70.1% and 77.3% accuracy on m2cai16-tool-locations and AJU-Set, respectively. We further validated the effectiveness of our proposed framework by analyzing the usage patterns, motion trajectories, and mobile values of surgical tools. |
doi_str_mv | 10.1109/ACCESS.2020.3028910 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3028910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9214412</ieee_id><doaj_id>oai_doaj_org_article_5e7d65aaf4704b898fbfdbb5c3f71929</doaj_id><sourcerecordid>2454678466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-78d21069afe748e1335c7546307e4aa0606621f40b69c949c21464ef7b862a873</originalsourceid><addsrcrecordid>eNpNUctq5DAQNEsCG7L5glwMe56JXtbjOJk8NjCwB0_2Ktpya9DgWI7kOeTvo8QhbF-6Kaqqu6mquqZkTSkxN5vt9r5t14wwsuaEaUPJj-qCUWlWvOHy7L_5Z3WV85GU0gVq1EXVtqd0CA6Geh_jkOs7nNHNIY71LWTs6zLsE4QxjIe6hZdpwHrTwzTDJyeM9Q4mSDG7OAVX_ws9xvyrOvcwZLz66pfV88P9fvtntfv7-LTd7FZONHpeKd0zSqQBj0popJw3TjVCcqJQABBJpGTUC9JJ44wwjlEhBXrVaclAK35ZPS2-fYSjnVJ4gfRmIwT7CcR0sJDm4Aa0DapeNgBeKCI6bbTvfN91jeNeUcNM8fq9eE0pvp4wz_YYT2ks51smylFKCykLiy8sV17OCf33VkrsRxh2CcN-hGG_wiiq60UVEPFbYco7gjL-Dtn5g80</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678466</pqid></control><display><type>article</type><title>Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Guangyao ; Wang, Shengsheng</creator><creatorcontrib>Wang, Guangyao ; Wang, Shengsheng</creatorcontrib><description>The performance of object detection methods plays an important role in the recognition of surgical tools, and is a key link in the automated evaluation of surgical skills. In this paper, we propose a novel framework for one-stage object detection based on a sample adaptive process controlled by reinforcement learning, which can maintain the speed advantage while maintaining higher accuracy than two-stage object detection methods. We use m2cai16-tool-locations and AJU-Set, two datasets covering seven surgical tools with spatial information collected from hospital gallbladder surgery videos to evaluate and verify the effectiveness of our proposed framework. The experiments show that our proposed framework can make the one-stage object detection method achieve 70.1% and 77.3% accuracy on m2cai16-tool-locations and AJU-Set, respectively. We further validated the effectiveness of our proposed framework by analyzing the usage patterns, motion trajectories, and mobile values of surgical tools.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3028910</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive sampling ; Gallbladder ; Hidden Markov models ; Laparoscopic surgery ; Learning (artificial intelligence) ; Object detection ; Object recognition ; reinforcement learning ; Spatial data ; Surgery ; Surgical apparatus & instruments ; Surgical instruments ; Training ; Video ; Videos</subject><ispartof>IEEE access, 2020, Vol.8, p.181723-181732</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-78d21069afe748e1335c7546307e4aa0606621f40b69c949c21464ef7b862a873</citedby><cites>FETCH-LOGICAL-c458t-78d21069afe748e1335c7546307e4aa0606621f40b69c949c21464ef7b862a873</cites><orcidid>0000-0002-8503-8061 ; 0000-0002-8012-7639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9214412$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Guangyao</creatorcontrib><creatorcontrib>Wang, Shengsheng</creatorcontrib><title>Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos</title><title>IEEE access</title><addtitle>Access</addtitle><description>The performance of object detection methods plays an important role in the recognition of surgical tools, and is a key link in the automated evaluation of surgical skills. In this paper, we propose a novel framework for one-stage object detection based on a sample adaptive process controlled by reinforcement learning, which can maintain the speed advantage while maintaining higher accuracy than two-stage object detection methods. We use m2cai16-tool-locations and AJU-Set, two datasets covering seven surgical tools with spatial information collected from hospital gallbladder surgery videos to evaluate and verify the effectiveness of our proposed framework. The experiments show that our proposed framework can make the one-stage object detection method achieve 70.1% and 77.3% accuracy on m2cai16-tool-locations and AJU-Set, respectively. We further validated the effectiveness of our proposed framework by analyzing the usage patterns, motion trajectories, and mobile values of surgical tools.</description><subject>Adaptive sampling</subject><subject>Gallbladder</subject><subject>Hidden Markov models</subject><subject>Laparoscopic surgery</subject><subject>Learning (artificial intelligence)</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>reinforcement learning</subject><subject>Spatial data</subject><subject>Surgery</subject><subject>Surgical apparatus & instruments</subject><subject>Surgical instruments</subject><subject>Training</subject><subject>Video</subject><subject>Videos</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctq5DAQNEsCG7L5glwMe56JXtbjOJk8NjCwB0_2Ktpya9DgWI7kOeTvo8QhbF-6Kaqqu6mquqZkTSkxN5vt9r5t14wwsuaEaUPJj-qCUWlWvOHy7L_5Z3WV85GU0gVq1EXVtqd0CA6Geh_jkOs7nNHNIY71LWTs6zLsE4QxjIe6hZdpwHrTwzTDJyeM9Q4mSDG7OAVX_ws9xvyrOvcwZLz66pfV88P9fvtntfv7-LTd7FZONHpeKd0zSqQBj0popJw3TjVCcqJQABBJpGTUC9JJ44wwjlEhBXrVaclAK35ZPS2-fYSjnVJ4gfRmIwT7CcR0sJDm4Aa0DapeNgBeKCI6bbTvfN91jeNeUcNM8fq9eE0pvp4wz_YYT2ks51smylFKCykLiy8sV17OCf33VkrsRxh2CcN-hGG_wiiq60UVEPFbYco7gjL-Dtn5g80</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Guangyao</creator><creator>Wang, Shengsheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8503-8061</orcidid><orcidid>https://orcid.org/0000-0002-8012-7639</orcidid></search><sort><creationdate>2020</creationdate><title>Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos</title><author>Wang, Guangyao ; Wang, Shengsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-78d21069afe748e1335c7546307e4aa0606621f40b69c949c21464ef7b862a873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive sampling</topic><topic>Gallbladder</topic><topic>Hidden Markov models</topic><topic>Laparoscopic surgery</topic><topic>Learning (artificial intelligence)</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>reinforcement learning</topic><topic>Spatial data</topic><topic>Surgery</topic><topic>Surgical apparatus & instruments</topic><topic>Surgical instruments</topic><topic>Training</topic><topic>Video</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guangyao</creatorcontrib><creatorcontrib>Wang, Shengsheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guangyao</au><au>Wang, Shengsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>181723</spage><epage>181732</epage><pages>181723-181732</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The performance of object detection methods plays an important role in the recognition of surgical tools, and is a key link in the automated evaluation of surgical skills. In this paper, we propose a novel framework for one-stage object detection based on a sample adaptive process controlled by reinforcement learning, which can maintain the speed advantage while maintaining higher accuracy than two-stage object detection methods. We use m2cai16-tool-locations and AJU-Set, two datasets covering seven surgical tools with spatial information collected from hospital gallbladder surgery videos to evaluate and verify the effectiveness of our proposed framework. The experiments show that our proposed framework can make the one-stage object detection method achieve 70.1% and 77.3% accuracy on m2cai16-tool-locations and AJU-Set, respectively. We further validated the effectiveness of our proposed framework by analyzing the usage patterns, motion trajectories, and mobile values of surgical tools.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3028910</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8503-8061</orcidid><orcidid>https://orcid.org/0000-0002-8012-7639</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.181723-181732 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3028910 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptive sampling Gallbladder Hidden Markov models Laparoscopic surgery Learning (artificial intelligence) Object detection Object recognition reinforcement learning Spatial data Surgery Surgical apparatus & instruments Surgical instruments Training Video Videos |
title | Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surgical%20Tools%20Detection%20Based%20on%20Training%20Sample%20Adaptation%20in%20Laparoscopic%20Videos&rft.jtitle=IEEE%20access&rft.au=Wang,%20Guangyao&rft.date=2020&rft.volume=8&rft.spage=181723&rft.epage=181732&rft.pages=181723-181732&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3028910&rft_dat=%3Cproquest_cross%3E2454678466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454678466&rft_id=info:pmid/&rft_ieee_id=9214412&rft_doaj_id=oai_doaj_org_article_5e7d65aaf4704b898fbfdbb5c3f71929&rfr_iscdi=true |