Active Learning for Imbalanced Ordinal Regression
Ordinal regression (OR), also called ordinal classification, is a special multi-classification designed for problems with ordered classes. Imbalanced data hinders the performance of classification algorithms, especially for OR algorithms, as imbalanced class distributions often arise in OR problems....
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.180608-180617 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180617 |
---|---|
container_issue | |
container_start_page | 180608 |
container_title | IEEE access |
container_volume | 8 |
creator | Ge, Jiaming Chen, Haiyan Zhang, Dongfang Hou, Xiaye Yuan, Ligang |
description | Ordinal regression (OR), also called ordinal classification, is a special multi-classification designed for problems with ordered classes. Imbalanced data hinders the performance of classification algorithms, especially for OR algorithms, as imbalanced class distributions often arise in OR problems. In this article, we address an active learning based solution for imbalanced OR problem. We propose an active learning algorithm for OR (AL-OR) to select the most informative samples from unlabeled samples, mark them and add them to the training set. Based on AL-OR, we put forward an improved active learning for imbalanced OR (IAL-IOR), which further adjust the sampling strategy of AL-OR dynamically to make the training data as valuable and balanced as possible. Recall rate for multi-classification and new mean absolute error are designed to measure the performance of the algorithms. To the best of our knowledge, our algorithm is the first algorithm for imbalanced OR in algorithm level. The experimental results show that the proposed algorithms have faster convergence and much better generalization ability than the classical methods and the state-of-the-art methods under the evaluation measurements for imbalance problems. In addition, we also proved the effectiveness of our algorithms by statistical analysis. |
doi_str_mv | 10.1109/ACCESS.2020.3027764 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3027764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9208667</ieee_id><doaj_id>oai_doaj_org_article_f7e301041f8d4b5da3d59b8eeab43a9e</doaj_id><sourcerecordid>2454393501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4f5d9c4e191eea63077a1a2705bcb544acef6fce5a08b5406f7c8c847b1b0bcf3</originalsourceid><addsrcrecordid>eNpNUMFqwzAMDWODla1f0Etg53RybMfOsYRuKxQK63Y2tiOXlDTu7HSwv1-6lDJdJD303kMvSWYE5oRA-byoquV2O88hhzmFXIiC3SSTnBRlRjktbv_N98k0xj0MJQeIi0lCFrZvvjFdow5d0-1S50O6Ohjd6s5inW5C3XS6Td9xFzDGxnePyZ3TbcTppT8kny_Lj-otW29eV9VinVkGss-Y43VpGZKSIOqCghCa6FwAN9ZwxrRFVziLXIMcdiicsNJKJgwxYKyjD8lq1K293qtjaA46_CivG_UH-LBTOvSNbVE5gRQIMOJkzQyvNa15aeTgaxjVJQ5aT6PWMfivE8Ze7f0pDH9FlTPOaEk5kOGKjlc2-BgDuqsrAXWOWo1Rq3PU6hL1wJqNrAYRr4wyB1kUgv4C7IR5hA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454393501</pqid></control><display><type>article</type><title>Active Learning for Imbalanced Ordinal Regression</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ge, Jiaming ; Chen, Haiyan ; Zhang, Dongfang ; Hou, Xiaye ; Yuan, Ligang</creator><creatorcontrib>Ge, Jiaming ; Chen, Haiyan ; Zhang, Dongfang ; Hou, Xiaye ; Yuan, Ligang</creatorcontrib><description>Ordinal regression (OR), also called ordinal classification, is a special multi-classification designed for problems with ordered classes. Imbalanced data hinders the performance of classification algorithms, especially for OR algorithms, as imbalanced class distributions often arise in OR problems. In this article, we address an active learning based solution for imbalanced OR problem. We propose an active learning algorithm for OR (AL-OR) to select the most informative samples from unlabeled samples, mark them and add them to the training set. Based on AL-OR, we put forward an improved active learning for imbalanced OR (IAL-IOR), which further adjust the sampling strategy of AL-OR dynamically to make the training data as valuable and balanced as possible. Recall rate for multi-classification and new mean absolute error are designed to measure the performance of the algorithms. To the best of our knowledge, our algorithm is the first algorithm for imbalanced OR in algorithm level. The experimental results show that the proposed algorithms have faster convergence and much better generalization ability than the classical methods and the state-of-the-art methods under the evaluation measurements for imbalance problems. In addition, we also proved the effectiveness of our algorithms by statistical analysis.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3027764</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active learning ; Algorithms ; class imbalanced ; Classification ; Error analysis ; evaluation method ; Extraterrestrial measurements ; Heuristic algorithms ; Machine learning ; Machine learning algorithms ; Ordinal regression ; Prediction algorithms ; Regression analysis ; State-of-the-art reviews ; Statistical analysis ; Statistical methods ; Support vector machines ; Time complexity ; Training</subject><ispartof>IEEE access, 2020, Vol.8, p.180608-180617</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4f5d9c4e191eea63077a1a2705bcb544acef6fce5a08b5406f7c8c847b1b0bcf3</citedby><cites>FETCH-LOGICAL-c408t-4f5d9c4e191eea63077a1a2705bcb544acef6fce5a08b5406f7c8c847b1b0bcf3</cites><orcidid>0000-0001-5785-5251 ; 0000-0002-8565-6417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9208667$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Ge, Jiaming</creatorcontrib><creatorcontrib>Chen, Haiyan</creatorcontrib><creatorcontrib>Zhang, Dongfang</creatorcontrib><creatorcontrib>Hou, Xiaye</creatorcontrib><creatorcontrib>Yuan, Ligang</creatorcontrib><title>Active Learning for Imbalanced Ordinal Regression</title><title>IEEE access</title><addtitle>Access</addtitle><description>Ordinal regression (OR), also called ordinal classification, is a special multi-classification designed for problems with ordered classes. Imbalanced data hinders the performance of classification algorithms, especially for OR algorithms, as imbalanced class distributions often arise in OR problems. In this article, we address an active learning based solution for imbalanced OR problem. We propose an active learning algorithm for OR (AL-OR) to select the most informative samples from unlabeled samples, mark them and add them to the training set. Based on AL-OR, we put forward an improved active learning for imbalanced OR (IAL-IOR), which further adjust the sampling strategy of AL-OR dynamically to make the training data as valuable and balanced as possible. Recall rate for multi-classification and new mean absolute error are designed to measure the performance of the algorithms. To the best of our knowledge, our algorithm is the first algorithm for imbalanced OR in algorithm level. The experimental results show that the proposed algorithms have faster convergence and much better generalization ability than the classical methods and the state-of-the-art methods under the evaluation measurements for imbalance problems. In addition, we also proved the effectiveness of our algorithms by statistical analysis.</description><subject>Active learning</subject><subject>Algorithms</subject><subject>class imbalanced</subject><subject>Classification</subject><subject>Error analysis</subject><subject>evaluation method</subject><subject>Extraterrestrial measurements</subject><subject>Heuristic algorithms</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Ordinal regression</subject><subject>Prediction algorithms</subject><subject>Regression analysis</subject><subject>State-of-the-art reviews</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Support vector machines</subject><subject>Time complexity</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFqwzAMDWODla1f0Etg53RybMfOsYRuKxQK63Y2tiOXlDTu7HSwv1-6lDJdJD303kMvSWYE5oRA-byoquV2O88hhzmFXIiC3SSTnBRlRjktbv_N98k0xj0MJQeIi0lCFrZvvjFdow5d0-1S50O6Ohjd6s5inW5C3XS6Td9xFzDGxnePyZ3TbcTppT8kny_Lj-otW29eV9VinVkGss-Y43VpGZKSIOqCghCa6FwAN9ZwxrRFVziLXIMcdiicsNJKJgwxYKyjD8lq1K293qtjaA46_CivG_UH-LBTOvSNbVE5gRQIMOJkzQyvNa15aeTgaxjVJQ5aT6PWMfivE8Ze7f0pDH9FlTPOaEk5kOGKjlc2-BgDuqsrAXWOWo1Rq3PU6hL1wJqNrAYRr4wyB1kUgv4C7IR5hA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ge, Jiaming</creator><creator>Chen, Haiyan</creator><creator>Zhang, Dongfang</creator><creator>Hou, Xiaye</creator><creator>Yuan, Ligang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5785-5251</orcidid><orcidid>https://orcid.org/0000-0002-8565-6417</orcidid></search><sort><creationdate>2020</creationdate><title>Active Learning for Imbalanced Ordinal Regression</title><author>Ge, Jiaming ; Chen, Haiyan ; Zhang, Dongfang ; Hou, Xiaye ; Yuan, Ligang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4f5d9c4e191eea63077a1a2705bcb544acef6fce5a08b5406f7c8c847b1b0bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active learning</topic><topic>Algorithms</topic><topic>class imbalanced</topic><topic>Classification</topic><topic>Error analysis</topic><topic>evaluation method</topic><topic>Extraterrestrial measurements</topic><topic>Heuristic algorithms</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Ordinal regression</topic><topic>Prediction algorithms</topic><topic>Regression analysis</topic><topic>State-of-the-art reviews</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Support vector machines</topic><topic>Time complexity</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Jiaming</creatorcontrib><creatorcontrib>Chen, Haiyan</creatorcontrib><creatorcontrib>Zhang, Dongfang</creatorcontrib><creatorcontrib>Hou, Xiaye</creatorcontrib><creatorcontrib>Yuan, Ligang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Jiaming</au><au>Chen, Haiyan</au><au>Zhang, Dongfang</au><au>Hou, Xiaye</au><au>Yuan, Ligang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Learning for Imbalanced Ordinal Regression</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>180608</spage><epage>180617</epage><pages>180608-180617</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Ordinal regression (OR), also called ordinal classification, is a special multi-classification designed for problems with ordered classes. Imbalanced data hinders the performance of classification algorithms, especially for OR algorithms, as imbalanced class distributions often arise in OR problems. In this article, we address an active learning based solution for imbalanced OR problem. We propose an active learning algorithm for OR (AL-OR) to select the most informative samples from unlabeled samples, mark them and add them to the training set. Based on AL-OR, we put forward an improved active learning for imbalanced OR (IAL-IOR), which further adjust the sampling strategy of AL-OR dynamically to make the training data as valuable and balanced as possible. Recall rate for multi-classification and new mean absolute error are designed to measure the performance of the algorithms. To the best of our knowledge, our algorithm is the first algorithm for imbalanced OR in algorithm level. The experimental results show that the proposed algorithms have faster convergence and much better generalization ability than the classical methods and the state-of-the-art methods under the evaluation measurements for imbalance problems. In addition, we also proved the effectiveness of our algorithms by statistical analysis.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3027764</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5785-5251</orcidid><orcidid>https://orcid.org/0000-0002-8565-6417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.180608-180617 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3027764 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Active learning Algorithms class imbalanced Classification Error analysis evaluation method Extraterrestrial measurements Heuristic algorithms Machine learning Machine learning algorithms Ordinal regression Prediction algorithms Regression analysis State-of-the-art reviews Statistical analysis Statistical methods Support vector machines Time complexity Training |
title | Active Learning for Imbalanced Ordinal Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Learning%20for%20Imbalanced%20Ordinal%20Regression&rft.jtitle=IEEE%20access&rft.au=Ge,%20Jiaming&rft.date=2020&rft.volume=8&rft.spage=180608&rft.epage=180617&rft.pages=180608-180617&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3027764&rft_dat=%3Cproquest_cross%3E2454393501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454393501&rft_id=info:pmid/&rft_ieee_id=9208667&rft_doaj_id=oai_doaj_org_article_f7e301041f8d4b5da3d59b8eeab43a9e&rfr_iscdi=true |