Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion
Multimodal emotion recognition has gained traction in affective computing research community to overcome the limitations posed by the processing a single form of data and to increase recognition robustness. In this study, a novel emotion recognition system is introduced, which is based on multiple m...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.168865-168878 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 168878 |
---|---|
container_issue | |
container_start_page | 168865 |
container_title | IEEE access |
container_volume | 8 |
creator | Cimtay, Yucel Ekmekcioglu, Erhan Caglar-Ozhan, Seyma |
description | Multimodal emotion recognition has gained traction in affective computing research community to overcome the limitations posed by the processing a single form of data and to increase recognition robustness. In this study, a novel emotion recognition system is introduced, which is based on multiple modalities including facial expressions, galvanic skin response (GSR) and electroencephalogram (EEG). This method follows a hybrid fusion strategy and yields a maximum one-subject-out accuracy of 81.2% and a mean accuracy of 74.2% on our bespoke multimodal emotion dataset (LUMED-2) for 3 emotion classes: sad, neutral and happy. Similarly, our approach yields a maximum one-subject-out accuracy of 91.5% and a mean accuracy of 53.8% on the Database for Emotion Analysis using Physiological Signals (DEAP) for varying numbers of emotion classes, 4 in average, including angry, disgust, afraid, happy, neutral, sad and surprised. The presented model is particularly useful in determining the correct emotional state in the case of natural deceptive facial expressions. In terms of emotion recognition accuracy, this study is superior to, or on par with, the reference subject-independent multimodal emotion recognition studies introduced in the literature. |
doi_str_mv | 10.1109/ACCESS.2020.3023871 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3023871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9195813</ieee_id><doaj_id>oai_doaj_org_article_28a5b17d5e7c44ba9bbcda163631ff1a</doaj_id><sourcerecordid>2454679139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-6a4dab1d13886cb4c5eaaa5ef3c5795c9ee01f25cbdb6eb1cb3fa47c58ff5f773</originalsourceid><addsrcrecordid>eNpNkE9rwkAQxUNpoWL9BF4CPcdmstls9miDVsFSqO15mf0nCeraTXLot-9qRDqXeTzmvV1-UTSFdAaQ8pd5VS2221mWZumMpBkpGdxFowwKnhBKivt_-jGatG2ThimDRdkoqirv2jbZ9rIxqovf-31XH5zGfbw4uK52x_jTKLc71hf9iq3RcRCrX-lrHS_7NthP0YPFfWsm1z2OvpeLr2qVbD7e1tV8k6icll1SYK5RggZSloWSuaIGEamxRFHGqeLGpGAzqqSWhZGgJLGYM0VLa6lljIyj9dCrHTbi5OsD-l_hsBYXw_mdQN_Vam9EViKVwDQ1TOW5RC6l0ggFKQhYCxi6noeuk3c_vWk70bjeH8P3RZbTvGAcCA9XZLhSZ0re2NurkIozfDHAF2f44go_pKZDqjbG3BIcOC2BkD8scoEO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454679139</pqid></control><display><type>article</type><title>Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cimtay, Yucel ; Ekmekcioglu, Erhan ; Caglar-Ozhan, Seyma</creator><creatorcontrib>Cimtay, Yucel ; Ekmekcioglu, Erhan ; Caglar-Ozhan, Seyma</creatorcontrib><description>Multimodal emotion recognition has gained traction in affective computing research community to overcome the limitations posed by the processing a single form of data and to increase recognition robustness. In this study, a novel emotion recognition system is introduced, which is based on multiple modalities including facial expressions, galvanic skin response (GSR) and electroencephalogram (EEG). This method follows a hybrid fusion strategy and yields a maximum one-subject-out accuracy of 81.2% and a mean accuracy of 74.2% on our bespoke multimodal emotion dataset (LUMED-2) for 3 emotion classes: sad, neutral and happy. Similarly, our approach yields a maximum one-subject-out accuracy of 91.5% and a mean accuracy of 53.8% on the Database for Emotion Analysis using Physiological Signals (DEAP) for varying numbers of emotion classes, 4 in average, including angry, disgust, afraid, happy, neutral, sad and surprised. The presented model is particularly useful in determining the correct emotional state in the case of natural deceptive facial expressions. In terms of emotion recognition accuracy, this study is superior to, or on par with, the reference subject-independent multimodal emotion recognition studies introduced in the literature.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3023871</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Affective computing ; Brain modeling ; convolutional neural network ; Data models ; electroencephalogram ; Electroencephalography ; Emotion recognition ; Emotions ; Feature extraction ; Galvanic skin response ; multimodal data fusion ; multimodal emotion recognition ; Physiology ; Support vector machines</subject><ispartof>IEEE access, 2020, Vol.8, p.168865-168878</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-6a4dab1d13886cb4c5eaaa5ef3c5795c9ee01f25cbdb6eb1cb3fa47c58ff5f773</citedby><cites>FETCH-LOGICAL-c458t-6a4dab1d13886cb4c5eaaa5ef3c5795c9ee01f25cbdb6eb1cb3fa47c58ff5f773</cites><orcidid>0000-0002-3759-4629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9195813$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Cimtay, Yucel</creatorcontrib><creatorcontrib>Ekmekcioglu, Erhan</creatorcontrib><creatorcontrib>Caglar-Ozhan, Seyma</creatorcontrib><title>Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion</title><title>IEEE access</title><addtitle>Access</addtitle><description>Multimodal emotion recognition has gained traction in affective computing research community to overcome the limitations posed by the processing a single form of data and to increase recognition robustness. In this study, a novel emotion recognition system is introduced, which is based on multiple modalities including facial expressions, galvanic skin response (GSR) and electroencephalogram (EEG). This method follows a hybrid fusion strategy and yields a maximum one-subject-out accuracy of 81.2% and a mean accuracy of 74.2% on our bespoke multimodal emotion dataset (LUMED-2) for 3 emotion classes: sad, neutral and happy. Similarly, our approach yields a maximum one-subject-out accuracy of 91.5% and a mean accuracy of 53.8% on the Database for Emotion Analysis using Physiological Signals (DEAP) for varying numbers of emotion classes, 4 in average, including angry, disgust, afraid, happy, neutral, sad and surprised. The presented model is particularly useful in determining the correct emotional state in the case of natural deceptive facial expressions. In terms of emotion recognition accuracy, this study is superior to, or on par with, the reference subject-independent multimodal emotion recognition studies introduced in the literature.</description><subject>Accuracy</subject><subject>Affective computing</subject><subject>Brain modeling</subject><subject>convolutional neural network</subject><subject>Data models</subject><subject>electroencephalogram</subject><subject>Electroencephalography</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Galvanic skin response</subject><subject>multimodal data fusion</subject><subject>multimodal emotion recognition</subject><subject>Physiology</subject><subject>Support vector machines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9rwkAQxUNpoWL9BF4CPcdmstls9miDVsFSqO15mf0nCeraTXLot-9qRDqXeTzmvV1-UTSFdAaQ8pd5VS2221mWZumMpBkpGdxFowwKnhBKivt_-jGatG2ThimDRdkoqirv2jbZ9rIxqovf-31XH5zGfbw4uK52x_jTKLc71hf9iq3RcRCrX-lrHS_7NthP0YPFfWsm1z2OvpeLr2qVbD7e1tV8k6icll1SYK5RggZSloWSuaIGEamxRFHGqeLGpGAzqqSWhZGgJLGYM0VLa6lljIyj9dCrHTbi5OsD-l_hsBYXw_mdQN_Vam9EViKVwDQ1TOW5RC6l0ggFKQhYCxi6noeuk3c_vWk70bjeH8P3RZbTvGAcCA9XZLhSZ0re2NurkIozfDHAF2f44go_pKZDqjbG3BIcOC2BkD8scoEO</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cimtay, Yucel</creator><creator>Ekmekcioglu, Erhan</creator><creator>Caglar-Ozhan, Seyma</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3759-4629</orcidid></search><sort><creationdate>2020</creationdate><title>Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion</title><author>Cimtay, Yucel ; Ekmekcioglu, Erhan ; Caglar-Ozhan, Seyma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-6a4dab1d13886cb4c5eaaa5ef3c5795c9ee01f25cbdb6eb1cb3fa47c58ff5f773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Affective computing</topic><topic>Brain modeling</topic><topic>convolutional neural network</topic><topic>Data models</topic><topic>electroencephalogram</topic><topic>Electroencephalography</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Galvanic skin response</topic><topic>multimodal data fusion</topic><topic>multimodal emotion recognition</topic><topic>Physiology</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cimtay, Yucel</creatorcontrib><creatorcontrib>Ekmekcioglu, Erhan</creatorcontrib><creatorcontrib>Caglar-Ozhan, Seyma</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cimtay, Yucel</au><au>Ekmekcioglu, Erhan</au><au>Caglar-Ozhan, Seyma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>168865</spage><epage>168878</epage><pages>168865-168878</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Multimodal emotion recognition has gained traction in affective computing research community to overcome the limitations posed by the processing a single form of data and to increase recognition robustness. In this study, a novel emotion recognition system is introduced, which is based on multiple modalities including facial expressions, galvanic skin response (GSR) and electroencephalogram (EEG). This method follows a hybrid fusion strategy and yields a maximum one-subject-out accuracy of 81.2% and a mean accuracy of 74.2% on our bespoke multimodal emotion dataset (LUMED-2) for 3 emotion classes: sad, neutral and happy. Similarly, our approach yields a maximum one-subject-out accuracy of 91.5% and a mean accuracy of 53.8% on the Database for Emotion Analysis using Physiological Signals (DEAP) for varying numbers of emotion classes, 4 in average, including angry, disgust, afraid, happy, neutral, sad and surprised. The presented model is particularly useful in determining the correct emotional state in the case of natural deceptive facial expressions. In terms of emotion recognition accuracy, this study is superior to, or on par with, the reference subject-independent multimodal emotion recognition studies introduced in the literature.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3023871</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3759-4629</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.168865-168878 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3023871 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Affective computing Brain modeling convolutional neural network Data models electroencephalogram Electroencephalography Emotion recognition Emotions Feature extraction Galvanic skin response multimodal data fusion multimodal emotion recognition Physiology Support vector machines |
title | Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Subject%20Multimodal%20Emotion%20Recognition%20Based%20on%20Hybrid%20Fusion&rft.jtitle=IEEE%20access&rft.au=Cimtay,%20Yucel&rft.date=2020&rft.volume=8&rft.spage=168865&rft.epage=168878&rft.pages=168865-168878&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3023871&rft_dat=%3Cproquest_cross%3E2454679139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454679139&rft_id=info:pmid/&rft_ieee_id=9195813&rft_doaj_id=oai_doaj_org_article_28a5b17d5e7c44ba9bbcda163631ff1a&rfr_iscdi=true |