Enhancement of ARFI-VTI Elastography Images in Order to Preliminary Rapid Screening of Benign and Malignant Breast Tumors Using Multilayer Fractional-Order Machine Vision Classifier

Breast tumor ranks fourth among various cancers in terms of mortality rate in Taiwan, and it is also the most commonly prevalent cancer in females. Early detection of any malignant lesions can increase the survival rate and also decline the mortality rate through current advanced medical therapies....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.164222-164237
Hauptverfasser: Wu, Jian-Xing, Liu, Hsiao-Chuan, Chen, Pi-Yun, Lin, Chia-Hung, Chou, Yi-Hong, Shung, K. Kirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164237
container_issue
container_start_page 164222
container_title IEEE access
container_volume 8
creator Wu, Jian-Xing
Liu, Hsiao-Chuan
Chen, Pi-Yun
Lin, Chia-Hung
Chou, Yi-Hong
Shung, K. Kirk
description Breast tumor ranks fourth among various cancers in terms of mortality rate in Taiwan, and it is also the most commonly prevalent cancer in females. Early detection of any malignant lesions can increase the survival rate and also decline the mortality rate through current advanced medical therapies. Acoustic radiation force impulse (ARFI) is a new imaging technique for distinguishing breast lesions in the early stage based on localized tissue displacement, which is quantitated by virtual touch tissue imaging (VTI). Digital ARFI-VTI is an initial breast imaging modality and appears to be more effective in women aged >30 years. Therefore, image enhancement process is a key technique to enhance a low- contrast image in a region of interest (ROI) for visualizing texture details and morphological features. In this study, two-dimensional (2D) fractional-order convolution, as a 2D sliding filter window (eight filters are selected), is applied to enhance ARFI-VTI images for an accurate extrapolation of lesions in an ROI. Then, the maximum pooling is performed to reduce the dimensions of the feature patterns from 32\times 32 to 16\times 16 size. A multilayer machine vision classifier, as a generalized regression neural network (GRNN), is then used to screen subjects with benign or malignant tumors. With a 10- fold cross-validation, promising results such as mean recall (%), mean precision (%), mean accuracy (%), and mean F1 score of 92.92± 3.43%, 80.42± 6.45%, 87.78± 2.17%, and 0.8615± 0.0495, respectively, are achieved for quantifying the performance of the proposed classifier. Breast tumors visualized on ARFI-VTI images can be useful as digitalized images for rapid screening of malignant from benign lesions by the proposed machine vision classifier.
doi_str_mv 10.1109/ACCESS.2020.3022388
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3022388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9194771</ieee_id><doaj_id>oai_doaj_org_article_08dd8e43b0c84cc59a9393db5f27ff35</doaj_id><sourcerecordid>2454678894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2084e29cd6dd122c9eed9ee6eb7395b3c3caf04e505cd3fb1eae22f08587b5613</originalsourceid><addsrcrecordid>eNpNUV1r2zAUNWODlay_oC-CPTuTJX9Ij6lJNkNDS5P2VcjStaNgS5nkPOSH9f9NmUupQOhwOPfce3WS5C7DyyzD_Neqrte73ZJggpcUE0IZ-5LckKzkKS1o-fUT_p7chnDE8bBIFdVN8ra2B2kVjGAn5Dq0et406eu-QetBhsn1Xp4OF9SMsoeAjEWPXoNHk0NPHgYzGiv9BT3Lk9FopzyANba_-txH1FskrUZbOUQoo_-9h2iK9ufR-YBewlW7PQ-TGeQlum68VJNxVg7p3GYr1cFYQK8mRBrVcaRgOgP-R_Ktk0OA2_d3kbxs1vv6T_rw-LupVw-pyjGbUoJZDoQrXWqdEaI4gI63hLaivGipokp2OIcCF0rTrs1AAiEdZgWr2qLM6CJpZl_t5FGcvBnjusJJI_4TzvdC-smoAQRmWjPIaYsVy5UquOSUU90WHam6Ln7-Ivk5e528-3uGMImjO_u4bBAkL_KyYoznUUVnlfIuBA_dR9cMi2vcYo5bXOMW73HHqru5ygDARwXPeF5VGf0H4SKpKA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678894</pqid></control><display><type>article</type><title>Enhancement of ARFI-VTI Elastography Images in Order to Preliminary Rapid Screening of Benign and Malignant Breast Tumors Using Multilayer Fractional-Order Machine Vision Classifier</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Jian-Xing ; Liu, Hsiao-Chuan ; Chen, Pi-Yun ; Lin, Chia-Hung ; Chou, Yi-Hong ; Shung, K. Kirk</creator><creatorcontrib>Wu, Jian-Xing ; Liu, Hsiao-Chuan ; Chen, Pi-Yun ; Lin, Chia-Hung ; Chou, Yi-Hong ; Shung, K. Kirk</creatorcontrib><description><![CDATA[Breast tumor ranks fourth among various cancers in terms of mortality rate in Taiwan, and it is also the most commonly prevalent cancer in females. Early detection of any malignant lesions can increase the survival rate and also decline the mortality rate through current advanced medical therapies. Acoustic radiation force impulse (ARFI) is a new imaging technique for distinguishing breast lesions in the early stage based on localized tissue displacement, which is quantitated by virtual touch tissue imaging (VTI). Digital ARFI-VTI is an initial breast imaging modality and appears to be more effective in women aged >30 years. Therefore, image enhancement process is a key technique to enhance a low- contrast image in a region of interest (ROI) for visualizing texture details and morphological features. In this study, two-dimensional (2D) fractional-order convolution, as a 2D sliding filter window (eight filters are selected), is applied to enhance ARFI-VTI images for an accurate extrapolation of lesions in an ROI. Then, the maximum pooling is performed to reduce the dimensions of the feature patterns from <inline-formula> <tex-math notation="LaTeX">32\times 32 </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">16\times 16 </tex-math></inline-formula> size. A multilayer machine vision classifier, as a generalized regression neural network (GRNN), is then used to screen subjects with benign or malignant tumors. With a 10- fold cross-validation, promising results such as mean recall (%), mean precision (%), mean accuracy (%), and mean F1 score of 92.92± 3.43%, 80.42± 6.45%, 87.78± 2.17%, and 0.8615± 0.0495, respectively, are achieved for quantifying the performance of the proposed classifier. Breast tumors visualized on ARFI-VTI images can be useful as digitalized images for rapid screening of malignant from benign lesions by the proposed machine vision classifier.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3022388</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustic radiation force impulse ; Breast cancer ; Classifiers ; Convolution ; Elastography ; fractional-order convolution ; Image contrast ; Image enhancement ; Imaging ; Lesions ; Machine vision ; multilayer machine vision classifier ; Multilayers ; Neural networks ; Screening ; Tumors ; Two dimensional displays ; Ultrasonic imaging ; virtual touch tissue imaging ; Vision systems</subject><ispartof>IEEE access, 2020, Vol.8, p.164222-164237</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2084e29cd6dd122c9eed9ee6eb7395b3c3caf04e505cd3fb1eae22f08587b5613</citedby><cites>FETCH-LOGICAL-c408t-2084e29cd6dd122c9eed9ee6eb7395b3c3caf04e505cd3fb1eae22f08587b5613</cites><orcidid>0000-0001-5205-5917 ; 0000-0001-7344-6394 ; 0000-0002-9327-7396 ; 0000-0003-0150-8001 ; 0000-0002-1460-7116 ; 0000-0003-1167-0299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9194771$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Wu, Jian-Xing</creatorcontrib><creatorcontrib>Liu, Hsiao-Chuan</creatorcontrib><creatorcontrib>Chen, Pi-Yun</creatorcontrib><creatorcontrib>Lin, Chia-Hung</creatorcontrib><creatorcontrib>Chou, Yi-Hong</creatorcontrib><creatorcontrib>Shung, K. Kirk</creatorcontrib><title>Enhancement of ARFI-VTI Elastography Images in Order to Preliminary Rapid Screening of Benign and Malignant Breast Tumors Using Multilayer Fractional-Order Machine Vision Classifier</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Breast tumor ranks fourth among various cancers in terms of mortality rate in Taiwan, and it is also the most commonly prevalent cancer in females. Early detection of any malignant lesions can increase the survival rate and also decline the mortality rate through current advanced medical therapies. Acoustic radiation force impulse (ARFI) is a new imaging technique for distinguishing breast lesions in the early stage based on localized tissue displacement, which is quantitated by virtual touch tissue imaging (VTI). Digital ARFI-VTI is an initial breast imaging modality and appears to be more effective in women aged >30 years. Therefore, image enhancement process is a key technique to enhance a low- contrast image in a region of interest (ROI) for visualizing texture details and morphological features. In this study, two-dimensional (2D) fractional-order convolution, as a 2D sliding filter window (eight filters are selected), is applied to enhance ARFI-VTI images for an accurate extrapolation of lesions in an ROI. Then, the maximum pooling is performed to reduce the dimensions of the feature patterns from <inline-formula> <tex-math notation="LaTeX">32\times 32 </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">16\times 16 </tex-math></inline-formula> size. A multilayer machine vision classifier, as a generalized regression neural network (GRNN), is then used to screen subjects with benign or malignant tumors. With a 10- fold cross-validation, promising results such as mean recall (%), mean precision (%), mean accuracy (%), and mean F1 score of 92.92± 3.43%, 80.42± 6.45%, 87.78± 2.17%, and 0.8615± 0.0495, respectively, are achieved for quantifying the performance of the proposed classifier. Breast tumors visualized on ARFI-VTI images can be useful as digitalized images for rapid screening of malignant from benign lesions by the proposed machine vision classifier.]]></description><subject>Acoustic radiation force impulse</subject><subject>Breast cancer</subject><subject>Classifiers</subject><subject>Convolution</subject><subject>Elastography</subject><subject>fractional-order convolution</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Imaging</subject><subject>Lesions</subject><subject>Machine vision</subject><subject>multilayer machine vision classifier</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Screening</subject><subject>Tumors</subject><subject>Two dimensional displays</subject><subject>Ultrasonic imaging</subject><subject>virtual touch tissue imaging</subject><subject>Vision systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r2zAUNWODlay_oC-CPTuTJX9Ij6lJNkNDS5P2VcjStaNgS5nkPOSH9f9NmUupQOhwOPfce3WS5C7DyyzD_Neqrte73ZJggpcUE0IZ-5LckKzkKS1o-fUT_p7chnDE8bBIFdVN8ra2B2kVjGAn5Dq0et406eu-QetBhsn1Xp4OF9SMsoeAjEWPXoNHk0NPHgYzGiv9BT3Lk9FopzyANba_-txH1FskrUZbOUQoo_-9h2iK9ufR-YBewlW7PQ-TGeQlum68VJNxVg7p3GYr1cFYQK8mRBrVcaRgOgP-R_Ktk0OA2_d3kbxs1vv6T_rw-LupVw-pyjGbUoJZDoQrXWqdEaI4gI63hLaivGipokp2OIcCF0rTrs1AAiEdZgWr2qLM6CJpZl_t5FGcvBnjusJJI_4TzvdC-smoAQRmWjPIaYsVy5UquOSUU90WHam6Ln7-Ivk5e528-3uGMImjO_u4bBAkL_KyYoznUUVnlfIuBA_dR9cMi2vcYo5bXOMW73HHqru5ygDARwXPeF5VGf0H4SKpKA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wu, Jian-Xing</creator><creator>Liu, Hsiao-Chuan</creator><creator>Chen, Pi-Yun</creator><creator>Lin, Chia-Hung</creator><creator>Chou, Yi-Hong</creator><creator>Shung, K. Kirk</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5205-5917</orcidid><orcidid>https://orcid.org/0000-0001-7344-6394</orcidid><orcidid>https://orcid.org/0000-0002-9327-7396</orcidid><orcidid>https://orcid.org/0000-0003-0150-8001</orcidid><orcidid>https://orcid.org/0000-0002-1460-7116</orcidid><orcidid>https://orcid.org/0000-0003-1167-0299</orcidid></search><sort><creationdate>2020</creationdate><title>Enhancement of ARFI-VTI Elastography Images in Order to Preliminary Rapid Screening of Benign and Malignant Breast Tumors Using Multilayer Fractional-Order Machine Vision Classifier</title><author>Wu, Jian-Xing ; Liu, Hsiao-Chuan ; Chen, Pi-Yun ; Lin, Chia-Hung ; Chou, Yi-Hong ; Shung, K. Kirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2084e29cd6dd122c9eed9ee6eb7395b3c3caf04e505cd3fb1eae22f08587b5613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic radiation force impulse</topic><topic>Breast cancer</topic><topic>Classifiers</topic><topic>Convolution</topic><topic>Elastography</topic><topic>fractional-order convolution</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Imaging</topic><topic>Lesions</topic><topic>Machine vision</topic><topic>multilayer machine vision classifier</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Screening</topic><topic>Tumors</topic><topic>Two dimensional displays</topic><topic>Ultrasonic imaging</topic><topic>virtual touch tissue imaging</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jian-Xing</creatorcontrib><creatorcontrib>Liu, Hsiao-Chuan</creatorcontrib><creatorcontrib>Chen, Pi-Yun</creatorcontrib><creatorcontrib>Lin, Chia-Hung</creatorcontrib><creatorcontrib>Chou, Yi-Hong</creatorcontrib><creatorcontrib>Shung, K. Kirk</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jian-Xing</au><au>Liu, Hsiao-Chuan</au><au>Chen, Pi-Yun</au><au>Lin, Chia-Hung</au><au>Chou, Yi-Hong</au><au>Shung, K. Kirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of ARFI-VTI Elastography Images in Order to Preliminary Rapid Screening of Benign and Malignant Breast Tumors Using Multilayer Fractional-Order Machine Vision Classifier</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>164222</spage><epage>164237</epage><pages>164222-164237</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Breast tumor ranks fourth among various cancers in terms of mortality rate in Taiwan, and it is also the most commonly prevalent cancer in females. Early detection of any malignant lesions can increase the survival rate and also decline the mortality rate through current advanced medical therapies. Acoustic radiation force impulse (ARFI) is a new imaging technique for distinguishing breast lesions in the early stage based on localized tissue displacement, which is quantitated by virtual touch tissue imaging (VTI). Digital ARFI-VTI is an initial breast imaging modality and appears to be more effective in women aged >30 years. Therefore, image enhancement process is a key technique to enhance a low- contrast image in a region of interest (ROI) for visualizing texture details and morphological features. In this study, two-dimensional (2D) fractional-order convolution, as a 2D sliding filter window (eight filters are selected), is applied to enhance ARFI-VTI images for an accurate extrapolation of lesions in an ROI. Then, the maximum pooling is performed to reduce the dimensions of the feature patterns from <inline-formula> <tex-math notation="LaTeX">32\times 32 </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">16\times 16 </tex-math></inline-formula> size. A multilayer machine vision classifier, as a generalized regression neural network (GRNN), is then used to screen subjects with benign or malignant tumors. With a 10- fold cross-validation, promising results such as mean recall (%), mean precision (%), mean accuracy (%), and mean F1 score of 92.92± 3.43%, 80.42± 6.45%, 87.78± 2.17%, and 0.8615± 0.0495, respectively, are achieved for quantifying the performance of the proposed classifier. Breast tumors visualized on ARFI-VTI images can be useful as digitalized images for rapid screening of malignant from benign lesions by the proposed machine vision classifier.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3022388</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5205-5917</orcidid><orcidid>https://orcid.org/0000-0001-7344-6394</orcidid><orcidid>https://orcid.org/0000-0002-9327-7396</orcidid><orcidid>https://orcid.org/0000-0003-0150-8001</orcidid><orcidid>https://orcid.org/0000-0002-1460-7116</orcidid><orcidid>https://orcid.org/0000-0003-1167-0299</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.164222-164237
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3022388
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Acoustic radiation force impulse
Breast cancer
Classifiers
Convolution
Elastography
fractional-order convolution
Image contrast
Image enhancement
Imaging
Lesions
Machine vision
multilayer machine vision classifier
Multilayers
Neural networks
Screening
Tumors
Two dimensional displays
Ultrasonic imaging
virtual touch tissue imaging
Vision systems
title Enhancement of ARFI-VTI Elastography Images in Order to Preliminary Rapid Screening of Benign and Malignant Breast Tumors Using Multilayer Fractional-Order Machine Vision Classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20ARFI-VTI%20Elastography%20Images%20in%20Order%20to%20Preliminary%20Rapid%20Screening%20of%20Benign%20and%20Malignant%20Breast%20Tumors%20Using%20Multilayer%20Fractional-Order%20Machine%20Vision%20Classifier&rft.jtitle=IEEE%20access&rft.au=Wu,%20Jian-Xing&rft.date=2020&rft.volume=8&rft.spage=164222&rft.epage=164237&rft.pages=164222-164237&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3022388&rft_dat=%3Cproquest_cross%3E2454678894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454678894&rft_id=info:pmid/&rft_ieee_id=9194771&rft_doaj_id=oai_doaj_org_article_08dd8e43b0c84cc59a9393db5f27ff35&rfr_iscdi=true