A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction
Accurate heat load prediction algorithm provides important support for the stable and efficient operation of smart district heating system(SDHS) and helps to realize energy saving and consumption reduction. However, previous researches on heat load prediction are mostly carried out on various regres...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Lin, Tao Pan, Yu Xue, Guixiang Song, Jiancai Qi, Chengying |
description | Accurate heat load prediction algorithm provides important support for the stable and efficient operation of smart district heating system(SDHS) and helps to realize energy saving and consumption reduction. However, previous researches on heat load prediction are mostly carried out on various regression analyses and modeling prediction, without considering the inherent time delay and spatial dependence between heat exchange stations during regulation. Therefore, a novel heat load prediction model based on the hybrid spatial-temporal attention long short-term memory (STALSTM) is proposed. The STALSTM model introduces the spatial dependence characteristics of heating pipe network into the heat load prediction model, and the influencing factors of heat consumption are considered comprehensively from the time and space dimensions. Then, the LSTM algorithm is used to memory the information of historical data sequence, and the attention mechanism is used to realize the adaptive estimation of the characteristic weight of each influencing factor, which improves the prediction accuracy. And in order to verify the effectiveness of the proposed model, a detailed experimental comparison is made between the STALSTM model and the state-of-the-art algorithms. The results show that the STALSTM model has the best prediction accuracy, and the correctness of introducing the spatial-temporal characteristics and the attention mechanism is also proved. |
doi_str_mv | 10.1109/ACCESS.2020.3017516 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3017516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9170609</ieee_id><doaj_id>oai_doaj_org_article_50f0b0be8ec54f3d858b0af3eacaba85</doaj_id><sourcerecordid>2454677462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fa48a4a92b6c12c0f95d369e7ab1bd2ce7c446168a59c3e84a667712967c39463</originalsourceid><addsrcrecordid>eNpNUU1rwkAQDaWFivUXeAn0HLvf2T2GYKugbUF7XiabSYlE125iwX_f2BTpXGZ4vI-BF0VTSmaUEvOU5fl8s5kxwsiME5pKqm6iEaPKJFxydfvvvo8mbbsj_egekukoWmfxq__GJl6ci1CX8eYIXQ1NssX90Qdo4qzr8NDV_pCsNtt1vPZlT658iBcIXbzyUMbvAcvaXTgP0V0FTYuTvz2OPp7n23yRrN5elnm2SpwguksqEBoEGFYoR5kjlZElVwZTKGhRMoepE0JRpUEax1ELUCpNKTMqddwIxcfRcvAtPezsMdR7CGfroba_gA-fFkJXuwatJBUpSIEanRQVL7XUBYGKIzgoQMve63HwOgb_dcK2szt_Cof-fcuEFH2wUKxn8YHlgm_bgNU1lRJ7qcEONdhLDfavhl41HVQ1Il4VhqZEEcN_AAXjgfU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454677462</pqid></control><display><type>article</type><title>A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lin, Tao ; Pan, Yu ; Xue, Guixiang ; Song, Jiancai ; Qi, Chengying</creator><creatorcontrib>Lin, Tao ; Pan, Yu ; Xue, Guixiang ; Song, Jiancai ; Qi, Chengying</creatorcontrib><description>Accurate heat load prediction algorithm provides important support for the stable and efficient operation of smart district heating system(SDHS) and helps to realize energy saving and consumption reduction. However, previous researches on heat load prediction are mostly carried out on various regression analyses and modeling prediction, without considering the inherent time delay and spatial dependence between heat exchange stations during regulation. Therefore, a novel heat load prediction model based on the hybrid spatial-temporal attention long short-term memory (STALSTM) is proposed. The STALSTM model introduces the spatial dependence characteristics of heating pipe network into the heat load prediction model, and the influencing factors of heat consumption are considered comprehensively from the time and space dimensions. Then, the LSTM algorithm is used to memory the information of historical data sequence, and the attention mechanism is used to realize the adaptive estimation of the characteristic weight of each influencing factor, which improves the prediction accuracy. And in order to verify the effectiveness of the proposed model, a detailed experimental comparison is made between the STALSTM model and the state-of-the-art algorithms. The results show that the STALSTM model has the best prediction accuracy, and the correctness of introducing the spatial-temporal characteristics and the attention mechanism is also proved.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3017516</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; attention mechanism ; Consumption ; District heating ; district heating system ; Heat exchange ; heat load prediction ; Heat pipes ; Heat transfer ; Load modeling ; Machine learning algorithms ; Model accuracy ; Prediction algorithms ; Prediction models ; Predictive models ; Regression analysis ; Space heating ; Spatial-Temporal ; Time dependence ; Time lag</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fa48a4a92b6c12c0f95d369e7ab1bd2ce7c446168a59c3e84a667712967c39463</citedby><cites>FETCH-LOGICAL-c408t-fa48a4a92b6c12c0f95d369e7ab1bd2ce7c446168a59c3e84a667712967c39463</cites><orcidid>0000-0003-4353-7433 ; 0000-0003-0585-047X ; 0000-0002-3608-2816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9170609$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lin, Tao</creatorcontrib><creatorcontrib>Pan, Yu</creatorcontrib><creatorcontrib>Xue, Guixiang</creatorcontrib><creatorcontrib>Song, Jiancai</creatorcontrib><creatorcontrib>Qi, Chengying</creatorcontrib><title>A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate heat load prediction algorithm provides important support for the stable and efficient operation of smart district heating system(SDHS) and helps to realize energy saving and consumption reduction. However, previous researches on heat load prediction are mostly carried out on various regression analyses and modeling prediction, without considering the inherent time delay and spatial dependence between heat exchange stations during regulation. Therefore, a novel heat load prediction model based on the hybrid spatial-temporal attention long short-term memory (STALSTM) is proposed. The STALSTM model introduces the spatial dependence characteristics of heating pipe network into the heat load prediction model, and the influencing factors of heat consumption are considered comprehensively from the time and space dimensions. Then, the LSTM algorithm is used to memory the information of historical data sequence, and the attention mechanism is used to realize the adaptive estimation of the characteristic weight of each influencing factor, which improves the prediction accuracy. And in order to verify the effectiveness of the proposed model, a detailed experimental comparison is made between the STALSTM model and the state-of-the-art algorithms. The results show that the STALSTM model has the best prediction accuracy, and the correctness of introducing the spatial-temporal characteristics and the attention mechanism is also proved.</description><subject>Algorithms</subject><subject>attention mechanism</subject><subject>Consumption</subject><subject>District heating</subject><subject>district heating system</subject><subject>Heat exchange</subject><subject>heat load prediction</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Load modeling</subject><subject>Machine learning algorithms</subject><subject>Model accuracy</subject><subject>Prediction algorithms</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Regression analysis</subject><subject>Space heating</subject><subject>Spatial-Temporal</subject><subject>Time dependence</subject><subject>Time lag</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQDaWFivUXeAn0HLvf2T2GYKugbUF7XiabSYlE125iwX_f2BTpXGZ4vI-BF0VTSmaUEvOU5fl8s5kxwsiME5pKqm6iEaPKJFxydfvvvo8mbbsj_egekukoWmfxq__GJl6ci1CX8eYIXQ1NssX90Qdo4qzr8NDV_pCsNtt1vPZlT658iBcIXbzyUMbvAcvaXTgP0V0FTYuTvz2OPp7n23yRrN5elnm2SpwguksqEBoEGFYoR5kjlZElVwZTKGhRMoepE0JRpUEax1ELUCpNKTMqddwIxcfRcvAtPezsMdR7CGfroba_gA-fFkJXuwatJBUpSIEanRQVL7XUBYGKIzgoQMve63HwOgb_dcK2szt_Cof-fcuEFH2wUKxn8YHlgm_bgNU1lRJ7qcEONdhLDfavhl41HVQ1Il4VhqZEEcN_AAXjgfU</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lin, Tao</creator><creator>Pan, Yu</creator><creator>Xue, Guixiang</creator><creator>Song, Jiancai</creator><creator>Qi, Chengying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4353-7433</orcidid><orcidid>https://orcid.org/0000-0003-0585-047X</orcidid><orcidid>https://orcid.org/0000-0002-3608-2816</orcidid></search><sort><creationdate>20200101</creationdate><title>A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction</title><author>Lin, Tao ; Pan, Yu ; Xue, Guixiang ; Song, Jiancai ; Qi, Chengying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fa48a4a92b6c12c0f95d369e7ab1bd2ce7c446168a59c3e84a667712967c39463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>attention mechanism</topic><topic>Consumption</topic><topic>District heating</topic><topic>district heating system</topic><topic>Heat exchange</topic><topic>heat load prediction</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Load modeling</topic><topic>Machine learning algorithms</topic><topic>Model accuracy</topic><topic>Prediction algorithms</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Regression analysis</topic><topic>Space heating</topic><topic>Spatial-Temporal</topic><topic>Time dependence</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Tao</creatorcontrib><creatorcontrib>Pan, Yu</creatorcontrib><creatorcontrib>Xue, Guixiang</creatorcontrib><creatorcontrib>Song, Jiancai</creatorcontrib><creatorcontrib>Qi, Chengying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Tao</au><au>Pan, Yu</au><au>Xue, Guixiang</au><au>Song, Jiancai</au><au>Qi, Chengying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate heat load prediction algorithm provides important support for the stable and efficient operation of smart district heating system(SDHS) and helps to realize energy saving and consumption reduction. However, previous researches on heat load prediction are mostly carried out on various regression analyses and modeling prediction, without considering the inherent time delay and spatial dependence between heat exchange stations during regulation. Therefore, a novel heat load prediction model based on the hybrid spatial-temporal attention long short-term memory (STALSTM) is proposed. The STALSTM model introduces the spatial dependence characteristics of heating pipe network into the heat load prediction model, and the influencing factors of heat consumption are considered comprehensively from the time and space dimensions. Then, the LSTM algorithm is used to memory the information of historical data sequence, and the attention mechanism is used to realize the adaptive estimation of the characteristic weight of each influencing factor, which improves the prediction accuracy. And in order to verify the effectiveness of the proposed model, a detailed experimental comparison is made between the STALSTM model and the state-of-the-art algorithms. The results show that the STALSTM model has the best prediction accuracy, and the correctness of introducing the spatial-temporal characteristics and the attention mechanism is also proved.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3017516</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4353-7433</orcidid><orcidid>https://orcid.org/0000-0003-0585-047X</orcidid><orcidid>https://orcid.org/0000-0002-3608-2816</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3017516 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms attention mechanism Consumption District heating district heating system Heat exchange heat load prediction Heat pipes Heat transfer Load modeling Machine learning algorithms Model accuracy Prediction algorithms Prediction models Predictive models Regression analysis Space heating Spatial-Temporal Time dependence Time lag |
title | A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Hybrid%20Spatial-Temporal%20Attention-LSTM%20Model%20for%20Heat%20Load%20Prediction&rft.jtitle=IEEE%20access&rft.au=Lin,%20Tao&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3017516&rft_dat=%3Cproquest_cross%3E2454677462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454677462&rft_id=info:pmid/&rft_ieee_id=9170609&rft_doaj_id=oai_doaj_org_article_50f0b0be8ec54f3d858b0af3eacaba85&rfr_iscdi=true |