A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction

Accurate heat load prediction algorithm provides important support for the stable and efficient operation of smart district heating system(SDHS) and helps to realize energy saving and consumption reduction. However, previous researches on heat load prediction are mostly carried out on various regres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Lin, Tao, Pan, Yu, Xue, Guixiang, Song, Jiancai, Qi, Chengying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Lin, Tao
Pan, Yu
Xue, Guixiang
Song, Jiancai
Qi, Chengying
description Accurate heat load prediction algorithm provides important support for the stable and efficient operation of smart district heating system(SDHS) and helps to realize energy saving and consumption reduction. However, previous researches on heat load prediction are mostly carried out on various regression analyses and modeling prediction, without considering the inherent time delay and spatial dependence between heat exchange stations during regulation. Therefore, a novel heat load prediction model based on the hybrid spatial-temporal attention long short-term memory (STALSTM) is proposed. The STALSTM model introduces the spatial dependence characteristics of heating pipe network into the heat load prediction model, and the influencing factors of heat consumption are considered comprehensively from the time and space dimensions. Then, the LSTM algorithm is used to memory the information of historical data sequence, and the attention mechanism is used to realize the adaptive estimation of the characteristic weight of each influencing factor, which improves the prediction accuracy. And in order to verify the effectiveness of the proposed model, a detailed experimental comparison is made between the STALSTM model and the state-of-the-art algorithms. The results show that the STALSTM model has the best prediction accuracy, and the correctness of introducing the spatial-temporal characteristics and the attention mechanism is also proved.
doi_str_mv 10.1109/ACCESS.2020.3017516
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3017516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9170609</ieee_id><doaj_id>oai_doaj_org_article_50f0b0be8ec54f3d858b0af3eacaba85</doaj_id><sourcerecordid>2454677462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fa48a4a92b6c12c0f95d369e7ab1bd2ce7c446168a59c3e84a667712967c39463</originalsourceid><addsrcrecordid>eNpNUU1rwkAQDaWFivUXeAn0HLvf2T2GYKugbUF7XiabSYlE125iwX_f2BTpXGZ4vI-BF0VTSmaUEvOU5fl8s5kxwsiME5pKqm6iEaPKJFxydfvvvo8mbbsj_egekukoWmfxq__GJl6ci1CX8eYIXQ1NssX90Qdo4qzr8NDV_pCsNtt1vPZlT658iBcIXbzyUMbvAcvaXTgP0V0FTYuTvz2OPp7n23yRrN5elnm2SpwguksqEBoEGFYoR5kjlZElVwZTKGhRMoepE0JRpUEax1ELUCpNKTMqddwIxcfRcvAtPezsMdR7CGfroba_gA-fFkJXuwatJBUpSIEanRQVL7XUBYGKIzgoQMve63HwOgb_dcK2szt_Cof-fcuEFH2wUKxn8YHlgm_bgNU1lRJ7qcEONdhLDfavhl41HVQ1Il4VhqZEEcN_AAXjgfU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454677462</pqid></control><display><type>article</type><title>A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lin, Tao ; Pan, Yu ; Xue, Guixiang ; Song, Jiancai ; Qi, Chengying</creator><creatorcontrib>Lin, Tao ; Pan, Yu ; Xue, Guixiang ; Song, Jiancai ; Qi, Chengying</creatorcontrib><description>Accurate heat load prediction algorithm provides important support for the stable and efficient operation of smart district heating system(SDHS) and helps to realize energy saving and consumption reduction. However, previous researches on heat load prediction are mostly carried out on various regression analyses and modeling prediction, without considering the inherent time delay and spatial dependence between heat exchange stations during regulation. Therefore, a novel heat load prediction model based on the hybrid spatial-temporal attention long short-term memory (STALSTM) is proposed. The STALSTM model introduces the spatial dependence characteristics of heating pipe network into the heat load prediction model, and the influencing factors of heat consumption are considered comprehensively from the time and space dimensions. Then, the LSTM algorithm is used to memory the information of historical data sequence, and the attention mechanism is used to realize the adaptive estimation of the characteristic weight of each influencing factor, which improves the prediction accuracy. And in order to verify the effectiveness of the proposed model, a detailed experimental comparison is made between the STALSTM model and the state-of-the-art algorithms. The results show that the STALSTM model has the best prediction accuracy, and the correctness of introducing the spatial-temporal characteristics and the attention mechanism is also proved.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3017516</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; attention mechanism ; Consumption ; District heating ; district heating system ; Heat exchange ; heat load prediction ; Heat pipes ; Heat transfer ; Load modeling ; Machine learning algorithms ; Model accuracy ; Prediction algorithms ; Prediction models ; Predictive models ; Regression analysis ; Space heating ; Spatial-Temporal ; Time dependence ; Time lag</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fa48a4a92b6c12c0f95d369e7ab1bd2ce7c446168a59c3e84a667712967c39463</citedby><cites>FETCH-LOGICAL-c408t-fa48a4a92b6c12c0f95d369e7ab1bd2ce7c446168a59c3e84a667712967c39463</cites><orcidid>0000-0003-4353-7433 ; 0000-0003-0585-047X ; 0000-0002-3608-2816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9170609$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lin, Tao</creatorcontrib><creatorcontrib>Pan, Yu</creatorcontrib><creatorcontrib>Xue, Guixiang</creatorcontrib><creatorcontrib>Song, Jiancai</creatorcontrib><creatorcontrib>Qi, Chengying</creatorcontrib><title>A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate heat load prediction algorithm provides important support for the stable and efficient operation of smart district heating system(SDHS) and helps to realize energy saving and consumption reduction. However, previous researches on heat load prediction are mostly carried out on various regression analyses and modeling prediction, without considering the inherent time delay and spatial dependence between heat exchange stations during regulation. Therefore, a novel heat load prediction model based on the hybrid spatial-temporal attention long short-term memory (STALSTM) is proposed. The STALSTM model introduces the spatial dependence characteristics of heating pipe network into the heat load prediction model, and the influencing factors of heat consumption are considered comprehensively from the time and space dimensions. Then, the LSTM algorithm is used to memory the information of historical data sequence, and the attention mechanism is used to realize the adaptive estimation of the characteristic weight of each influencing factor, which improves the prediction accuracy. And in order to verify the effectiveness of the proposed model, a detailed experimental comparison is made between the STALSTM model and the state-of-the-art algorithms. The results show that the STALSTM model has the best prediction accuracy, and the correctness of introducing the spatial-temporal characteristics and the attention mechanism is also proved.</description><subject>Algorithms</subject><subject>attention mechanism</subject><subject>Consumption</subject><subject>District heating</subject><subject>district heating system</subject><subject>Heat exchange</subject><subject>heat load prediction</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Load modeling</subject><subject>Machine learning algorithms</subject><subject>Model accuracy</subject><subject>Prediction algorithms</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Regression analysis</subject><subject>Space heating</subject><subject>Spatial-Temporal</subject><subject>Time dependence</subject><subject>Time lag</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQDaWFivUXeAn0HLvf2T2GYKugbUF7XiabSYlE125iwX_f2BTpXGZ4vI-BF0VTSmaUEvOU5fl8s5kxwsiME5pKqm6iEaPKJFxydfvvvo8mbbsj_egekukoWmfxq__GJl6ci1CX8eYIXQ1NssX90Qdo4qzr8NDV_pCsNtt1vPZlT658iBcIXbzyUMbvAcvaXTgP0V0FTYuTvz2OPp7n23yRrN5elnm2SpwguksqEBoEGFYoR5kjlZElVwZTKGhRMoepE0JRpUEax1ELUCpNKTMqddwIxcfRcvAtPezsMdR7CGfroba_gA-fFkJXuwatJBUpSIEanRQVL7XUBYGKIzgoQMve63HwOgb_dcK2szt_Cof-fcuEFH2wUKxn8YHlgm_bgNU1lRJ7qcEONdhLDfavhl41HVQ1Il4VhqZEEcN_AAXjgfU</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lin, Tao</creator><creator>Pan, Yu</creator><creator>Xue, Guixiang</creator><creator>Song, Jiancai</creator><creator>Qi, Chengying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4353-7433</orcidid><orcidid>https://orcid.org/0000-0003-0585-047X</orcidid><orcidid>https://orcid.org/0000-0002-3608-2816</orcidid></search><sort><creationdate>20200101</creationdate><title>A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction</title><author>Lin, Tao ; Pan, Yu ; Xue, Guixiang ; Song, Jiancai ; Qi, Chengying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fa48a4a92b6c12c0f95d369e7ab1bd2ce7c446168a59c3e84a667712967c39463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>attention mechanism</topic><topic>Consumption</topic><topic>District heating</topic><topic>district heating system</topic><topic>Heat exchange</topic><topic>heat load prediction</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Load modeling</topic><topic>Machine learning algorithms</topic><topic>Model accuracy</topic><topic>Prediction algorithms</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Regression analysis</topic><topic>Space heating</topic><topic>Spatial-Temporal</topic><topic>Time dependence</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Tao</creatorcontrib><creatorcontrib>Pan, Yu</creatorcontrib><creatorcontrib>Xue, Guixiang</creatorcontrib><creatorcontrib>Song, Jiancai</creatorcontrib><creatorcontrib>Qi, Chengying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Tao</au><au>Pan, Yu</au><au>Xue, Guixiang</au><au>Song, Jiancai</au><au>Qi, Chengying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate heat load prediction algorithm provides important support for the stable and efficient operation of smart district heating system(SDHS) and helps to realize energy saving and consumption reduction. However, previous researches on heat load prediction are mostly carried out on various regression analyses and modeling prediction, without considering the inherent time delay and spatial dependence between heat exchange stations during regulation. Therefore, a novel heat load prediction model based on the hybrid spatial-temporal attention long short-term memory (STALSTM) is proposed. The STALSTM model introduces the spatial dependence characteristics of heating pipe network into the heat load prediction model, and the influencing factors of heat consumption are considered comprehensively from the time and space dimensions. Then, the LSTM algorithm is used to memory the information of historical data sequence, and the attention mechanism is used to realize the adaptive estimation of the characteristic weight of each influencing factor, which improves the prediction accuracy. And in order to verify the effectiveness of the proposed model, a detailed experimental comparison is made between the STALSTM model and the state-of-the-art algorithms. The results show that the STALSTM model has the best prediction accuracy, and the correctness of introducing the spatial-temporal characteristics and the attention mechanism is also proved.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3017516</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4353-7433</orcidid><orcidid>https://orcid.org/0000-0003-0585-047X</orcidid><orcidid>https://orcid.org/0000-0002-3608-2816</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3017516
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
attention mechanism
Consumption
District heating
district heating system
Heat exchange
heat load prediction
Heat pipes
Heat transfer
Load modeling
Machine learning algorithms
Model accuracy
Prediction algorithms
Prediction models
Predictive models
Regression analysis
Space heating
Spatial-Temporal
Time dependence
Time lag
title A Novel Hybrid Spatial-Temporal Attention-LSTM Model for Heat Load Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Hybrid%20Spatial-Temporal%20Attention-LSTM%20Model%20for%20Heat%20Load%20Prediction&rft.jtitle=IEEE%20access&rft.au=Lin,%20Tao&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3017516&rft_dat=%3Cproquest_cross%3E2454677462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454677462&rft_id=info:pmid/&rft_ieee_id=9170609&rft_doaj_id=oai_doaj_org_article_50f0b0be8ec54f3d858b0af3eacaba85&rfr_iscdi=true