Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton With Pneumatic Artificial Muscle Actuators

This paper presents the design, dynamic modeling and motion control of a novel cable-driven upper limb robotic exoskeleton for a rehabilitation exercising. The proposed four degree-of-freedom robotic exoskeleton, actuated by pneumatic artificial muscle actuators, is characterized by a safe, compact,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.149796-149807
Hauptverfasser: Chen, Chun-Ta, Lien, Wei-Yuan, Chen, Chun-Ting, Twu, Ming-Jenq, Wu, Yu-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149807
container_issue
container_start_page 149796
container_title IEEE access
container_volume 8
creator Chen, Chun-Ta
Lien, Wei-Yuan
Chen, Chun-Ting
Twu, Ming-Jenq
Wu, Yu-Cheng
description This paper presents the design, dynamic modeling and motion control of a novel cable-driven upper limb robotic exoskeleton for a rehabilitation exercising. The proposed four degree-of-freedom robotic exoskeleton, actuated by pneumatic artificial muscle actuators, is characterized by a safe, compact, and lightweight structure, complying with the motion of an upper limb as close as possible. In order to perform a passive rehabilitation exercise, the dynamic models were developed by the Lagrange formulation in terms of quasi coordinates combined with the virtual work principle, and then the adaptive fuzzy sliding mode control was designed for the rehabilitation trajectory control. Finally, rehabilitation experiments were conducted to validate the prototype of upper limb robotic exoskeleton and the controller design.
doi_str_mv 10.1109/ACCESS.2020.3016726
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3016726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9167205</ieee_id><doaj_id>oai_doaj_org_article_6fd09ca7dcec4e8a8444818c090634e4</doaj_id><sourcerecordid>2454641060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ab74df02ee4d3a0e5f71f02312c593022e18c923f070fcf034aaf12c1b54eca23</originalsourceid><addsrcrecordid>eNpNUctO3DAUjSoqFQFfwMZS1xmuH3ktR2FakEBF0KpL645zTT3NxNR2UPn7eghC9ca-9zx8pFMU5xxWnEN3se77zcPDSoCAlQReN6L-UBwLXnelrGR99N_7U3EW4w7yafOqao6LdPky4d4ZdusHGt30yHAa8pCcn1jvpxT8yLxlyHrcjlReBvdME7v320wxbPPXx980Usrsny79YncTzXs8QOuQnHXG4chu52hGYmuTZkw-xNPio8Ux0tnbfVL8-LL53l-VN9--Xvfrm9IoaFOJ20YNFgSRGiQCVbbheZRcmKqTIATx1nRCWmjAGgtSIdoM8m2lyKCQJ8X14jt43Omn4PYYXrRHp18XPjxqzClzNl3bATqDzWDIKGqxVUq12R46qKUilb0-L15Pwf-ZKSa983OYcnwtVKVqxaGGzJILywQfYyD7_isHfWhLL23pQ1v6ra2sOl9UjojeFd0BhEr-A5RukNo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454641060</pqid></control><display><type>article</type><title>Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton With Pneumatic Artificial Muscle Actuators</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Chun-Ta ; Lien, Wei-Yuan ; Chen, Chun-Ting ; Twu, Ming-Jenq ; Wu, Yu-Cheng</creator><creatorcontrib>Chen, Chun-Ta ; Lien, Wei-Yuan ; Chen, Chun-Ting ; Twu, Ming-Jenq ; Wu, Yu-Cheng</creatorcontrib><description>This paper presents the design, dynamic modeling and motion control of a novel cable-driven upper limb robotic exoskeleton for a rehabilitation exercising. The proposed four degree-of-freedom robotic exoskeleton, actuated by pneumatic artificial muscle actuators, is characterized by a safe, compact, and lightweight structure, complying with the motion of an upper limb as close as possible. In order to perform a passive rehabilitation exercise, the dynamic models were developed by the Lagrange formulation in terms of quasi coordinates combined with the virtual work principle, and then the adaptive fuzzy sliding mode control was designed for the rehabilitation trajectory control. Finally, rehabilitation experiments were conducted to validate the prototype of upper limb robotic exoskeleton and the controller design.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3016726</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Adaptive control ; adaptive fuzzy sliding mode control ; Artificial muscles ; Control systems design ; Dynamic models ; Dynamics ; Exoskeletons ; Fuzzy control ; Mathematical model ; Modelling ; Motion control ; Pneumatic artificial muscle ; Pneumatic systems ; Rehabilitation ; Robot kinematics ; robotic exoskeleton ; Robotics ; Shoulder ; Sliding mode control ; Trajectory control</subject><ispartof>IEEE access, 2020, Vol.8, p.149796-149807</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ab74df02ee4d3a0e5f71f02312c593022e18c923f070fcf034aaf12c1b54eca23</citedby><cites>FETCH-LOGICAL-c408t-ab74df02ee4d3a0e5f71f02312c593022e18c923f070fcf034aaf12c1b54eca23</cites><orcidid>0000-0001-8577-4424 ; 0000-0001-6872-4898 ; 0000-0002-7736-1803 ; 0000-0003-2208-2927 ; 0000-0002-6462-9321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9167205$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Chen, Chun-Ta</creatorcontrib><creatorcontrib>Lien, Wei-Yuan</creatorcontrib><creatorcontrib>Chen, Chun-Ting</creatorcontrib><creatorcontrib>Twu, Ming-Jenq</creatorcontrib><creatorcontrib>Wu, Yu-Cheng</creatorcontrib><title>Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton With Pneumatic Artificial Muscle Actuators</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents the design, dynamic modeling and motion control of a novel cable-driven upper limb robotic exoskeleton for a rehabilitation exercising. The proposed four degree-of-freedom robotic exoskeleton, actuated by pneumatic artificial muscle actuators, is characterized by a safe, compact, and lightweight structure, complying with the motion of an upper limb as close as possible. In order to perform a passive rehabilitation exercise, the dynamic models were developed by the Lagrange formulation in terms of quasi coordinates combined with the virtual work principle, and then the adaptive fuzzy sliding mode control was designed for the rehabilitation trajectory control. Finally, rehabilitation experiments were conducted to validate the prototype of upper limb robotic exoskeleton and the controller design.</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>adaptive fuzzy sliding mode control</subject><subject>Artificial muscles</subject><subject>Control systems design</subject><subject>Dynamic models</subject><subject>Dynamics</subject><subject>Exoskeletons</subject><subject>Fuzzy control</subject><subject>Mathematical model</subject><subject>Modelling</subject><subject>Motion control</subject><subject>Pneumatic artificial muscle</subject><subject>Pneumatic systems</subject><subject>Rehabilitation</subject><subject>Robot kinematics</subject><subject>robotic exoskeleton</subject><subject>Robotics</subject><subject>Shoulder</subject><subject>Sliding mode control</subject><subject>Trajectory control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctO3DAUjSoqFQFfwMZS1xmuH3ktR2FakEBF0KpL645zTT3NxNR2UPn7eghC9ca-9zx8pFMU5xxWnEN3se77zcPDSoCAlQReN6L-UBwLXnelrGR99N_7U3EW4w7yafOqao6LdPky4d4ZdusHGt30yHAa8pCcn1jvpxT8yLxlyHrcjlReBvdME7v320wxbPPXx980Usrsny79YncTzXs8QOuQnHXG4chu52hGYmuTZkw-xNPio8Ux0tnbfVL8-LL53l-VN9--Xvfrm9IoaFOJ20YNFgSRGiQCVbbheZRcmKqTIATx1nRCWmjAGgtSIdoM8m2lyKCQJ8X14jt43Omn4PYYXrRHp18XPjxqzClzNl3bATqDzWDIKGqxVUq12R46qKUilb0-L15Pwf-ZKSa983OYcnwtVKVqxaGGzJILywQfYyD7_isHfWhLL23pQ1v6ra2sOl9UjojeFd0BhEr-A5RukNo</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chen, Chun-Ta</creator><creator>Lien, Wei-Yuan</creator><creator>Chen, Chun-Ting</creator><creator>Twu, Ming-Jenq</creator><creator>Wu, Yu-Cheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8577-4424</orcidid><orcidid>https://orcid.org/0000-0001-6872-4898</orcidid><orcidid>https://orcid.org/0000-0002-7736-1803</orcidid><orcidid>https://orcid.org/0000-0003-2208-2927</orcidid><orcidid>https://orcid.org/0000-0002-6462-9321</orcidid></search><sort><creationdate>2020</creationdate><title>Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton With Pneumatic Artificial Muscle Actuators</title><author>Chen, Chun-Ta ; Lien, Wei-Yuan ; Chen, Chun-Ting ; Twu, Ming-Jenq ; Wu, Yu-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ab74df02ee4d3a0e5f71f02312c593022e18c923f070fcf034aaf12c1b54eca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>adaptive fuzzy sliding mode control</topic><topic>Artificial muscles</topic><topic>Control systems design</topic><topic>Dynamic models</topic><topic>Dynamics</topic><topic>Exoskeletons</topic><topic>Fuzzy control</topic><topic>Mathematical model</topic><topic>Modelling</topic><topic>Motion control</topic><topic>Pneumatic artificial muscle</topic><topic>Pneumatic systems</topic><topic>Rehabilitation</topic><topic>Robot kinematics</topic><topic>robotic exoskeleton</topic><topic>Robotics</topic><topic>Shoulder</topic><topic>Sliding mode control</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chun-Ta</creatorcontrib><creatorcontrib>Lien, Wei-Yuan</creatorcontrib><creatorcontrib>Chen, Chun-Ting</creatorcontrib><creatorcontrib>Twu, Ming-Jenq</creatorcontrib><creatorcontrib>Wu, Yu-Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chun-Ta</au><au>Lien, Wei-Yuan</au><au>Chen, Chun-Ting</au><au>Twu, Ming-Jenq</au><au>Wu, Yu-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton With Pneumatic Artificial Muscle Actuators</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>149796</spage><epage>149807</epage><pages>149796-149807</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents the design, dynamic modeling and motion control of a novel cable-driven upper limb robotic exoskeleton for a rehabilitation exercising. The proposed four degree-of-freedom robotic exoskeleton, actuated by pneumatic artificial muscle actuators, is characterized by a safe, compact, and lightweight structure, complying with the motion of an upper limb as close as possible. In order to perform a passive rehabilitation exercise, the dynamic models were developed by the Lagrange formulation in terms of quasi coordinates combined with the virtual work principle, and then the adaptive fuzzy sliding mode control was designed for the rehabilitation trajectory control. Finally, rehabilitation experiments were conducted to validate the prototype of upper limb robotic exoskeleton and the controller design.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3016726</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8577-4424</orcidid><orcidid>https://orcid.org/0000-0001-6872-4898</orcidid><orcidid>https://orcid.org/0000-0002-7736-1803</orcidid><orcidid>https://orcid.org/0000-0003-2208-2927</orcidid><orcidid>https://orcid.org/0000-0002-6462-9321</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.149796-149807
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3016726
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Actuators
Adaptive control
adaptive fuzzy sliding mode control
Artificial muscles
Control systems design
Dynamic models
Dynamics
Exoskeletons
Fuzzy control
Mathematical model
Modelling
Motion control
Pneumatic artificial muscle
Pneumatic systems
Rehabilitation
Robot kinematics
robotic exoskeleton
Robotics
Shoulder
Sliding mode control
Trajectory control
title Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton With Pneumatic Artificial Muscle Actuators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Modeling%20and%20Motion%20Control%20of%20a%20Cable-Driven%20Robotic%20Exoskeleton%20With%20Pneumatic%20Artificial%20Muscle%20Actuators&rft.jtitle=IEEE%20access&rft.au=Chen,%20Chun-Ta&rft.date=2020&rft.volume=8&rft.spage=149796&rft.epage=149807&rft.pages=149796-149807&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3016726&rft_dat=%3Cproquest_cross%3E2454641060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454641060&rft_id=info:pmid/&rft_ieee_id=9167205&rft_doaj_id=oai_doaj_org_article_6fd09ca7dcec4e8a8444818c090634e4&rfr_iscdi=true