Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton With Pneumatic Artificial Muscle Actuators
This paper presents the design, dynamic modeling and motion control of a novel cable-driven upper limb robotic exoskeleton for a rehabilitation exercising. The proposed four degree-of-freedom robotic exoskeleton, actuated by pneumatic artificial muscle actuators, is characterized by a safe, compact,...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.149796-149807 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149807 |
---|---|
container_issue | |
container_start_page | 149796 |
container_title | IEEE access |
container_volume | 8 |
creator | Chen, Chun-Ta Lien, Wei-Yuan Chen, Chun-Ting Twu, Ming-Jenq Wu, Yu-Cheng |
description | This paper presents the design, dynamic modeling and motion control of a novel cable-driven upper limb robotic exoskeleton for a rehabilitation exercising. The proposed four degree-of-freedom robotic exoskeleton, actuated by pneumatic artificial muscle actuators, is characterized by a safe, compact, and lightweight structure, complying with the motion of an upper limb as close as possible. In order to perform a passive rehabilitation exercise, the dynamic models were developed by the Lagrange formulation in terms of quasi coordinates combined with the virtual work principle, and then the adaptive fuzzy sliding mode control was designed for the rehabilitation trajectory control. Finally, rehabilitation experiments were conducted to validate the prototype of upper limb robotic exoskeleton and the controller design. |
doi_str_mv | 10.1109/ACCESS.2020.3016726 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3016726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9167205</ieee_id><doaj_id>oai_doaj_org_article_6fd09ca7dcec4e8a8444818c090634e4</doaj_id><sourcerecordid>2454641060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ab74df02ee4d3a0e5f71f02312c593022e18c923f070fcf034aaf12c1b54eca23</originalsourceid><addsrcrecordid>eNpNUctO3DAUjSoqFQFfwMZS1xmuH3ktR2FakEBF0KpL645zTT3NxNR2UPn7eghC9ca-9zx8pFMU5xxWnEN3se77zcPDSoCAlQReN6L-UBwLXnelrGR99N_7U3EW4w7yafOqao6LdPky4d4ZdusHGt30yHAa8pCcn1jvpxT8yLxlyHrcjlReBvdME7v320wxbPPXx980Usrsny79YncTzXs8QOuQnHXG4chu52hGYmuTZkw-xNPio8Ux0tnbfVL8-LL53l-VN9--Xvfrm9IoaFOJ20YNFgSRGiQCVbbheZRcmKqTIATx1nRCWmjAGgtSIdoM8m2lyKCQJ8X14jt43Omn4PYYXrRHp18XPjxqzClzNl3bATqDzWDIKGqxVUq12R46qKUilb0-L15Pwf-ZKSa983OYcnwtVKVqxaGGzJILywQfYyD7_isHfWhLL23pQ1v6ra2sOl9UjojeFd0BhEr-A5RukNo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454641060</pqid></control><display><type>article</type><title>Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton With Pneumatic Artificial Muscle Actuators</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Chun-Ta ; Lien, Wei-Yuan ; Chen, Chun-Ting ; Twu, Ming-Jenq ; Wu, Yu-Cheng</creator><creatorcontrib>Chen, Chun-Ta ; Lien, Wei-Yuan ; Chen, Chun-Ting ; Twu, Ming-Jenq ; Wu, Yu-Cheng</creatorcontrib><description>This paper presents the design, dynamic modeling and motion control of a novel cable-driven upper limb robotic exoskeleton for a rehabilitation exercising. The proposed four degree-of-freedom robotic exoskeleton, actuated by pneumatic artificial muscle actuators, is characterized by a safe, compact, and lightweight structure, complying with the motion of an upper limb as close as possible. In order to perform a passive rehabilitation exercise, the dynamic models were developed by the Lagrange formulation in terms of quasi coordinates combined with the virtual work principle, and then the adaptive fuzzy sliding mode control was designed for the rehabilitation trajectory control. Finally, rehabilitation experiments were conducted to validate the prototype of upper limb robotic exoskeleton and the controller design.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3016726</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Adaptive control ; adaptive fuzzy sliding mode control ; Artificial muscles ; Control systems design ; Dynamic models ; Dynamics ; Exoskeletons ; Fuzzy control ; Mathematical model ; Modelling ; Motion control ; Pneumatic artificial muscle ; Pneumatic systems ; Rehabilitation ; Robot kinematics ; robotic exoskeleton ; Robotics ; Shoulder ; Sliding mode control ; Trajectory control</subject><ispartof>IEEE access, 2020, Vol.8, p.149796-149807</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ab74df02ee4d3a0e5f71f02312c593022e18c923f070fcf034aaf12c1b54eca23</citedby><cites>FETCH-LOGICAL-c408t-ab74df02ee4d3a0e5f71f02312c593022e18c923f070fcf034aaf12c1b54eca23</cites><orcidid>0000-0001-8577-4424 ; 0000-0001-6872-4898 ; 0000-0002-7736-1803 ; 0000-0003-2208-2927 ; 0000-0002-6462-9321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9167205$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Chen, Chun-Ta</creatorcontrib><creatorcontrib>Lien, Wei-Yuan</creatorcontrib><creatorcontrib>Chen, Chun-Ting</creatorcontrib><creatorcontrib>Twu, Ming-Jenq</creatorcontrib><creatorcontrib>Wu, Yu-Cheng</creatorcontrib><title>Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton With Pneumatic Artificial Muscle Actuators</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents the design, dynamic modeling and motion control of a novel cable-driven upper limb robotic exoskeleton for a rehabilitation exercising. The proposed four degree-of-freedom robotic exoskeleton, actuated by pneumatic artificial muscle actuators, is characterized by a safe, compact, and lightweight structure, complying with the motion of an upper limb as close as possible. In order to perform a passive rehabilitation exercise, the dynamic models were developed by the Lagrange formulation in terms of quasi coordinates combined with the virtual work principle, and then the adaptive fuzzy sliding mode control was designed for the rehabilitation trajectory control. Finally, rehabilitation experiments were conducted to validate the prototype of upper limb robotic exoskeleton and the controller design.</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>adaptive fuzzy sliding mode control</subject><subject>Artificial muscles</subject><subject>Control systems design</subject><subject>Dynamic models</subject><subject>Dynamics</subject><subject>Exoskeletons</subject><subject>Fuzzy control</subject><subject>Mathematical model</subject><subject>Modelling</subject><subject>Motion control</subject><subject>Pneumatic artificial muscle</subject><subject>Pneumatic systems</subject><subject>Rehabilitation</subject><subject>Robot kinematics</subject><subject>robotic exoskeleton</subject><subject>Robotics</subject><subject>Shoulder</subject><subject>Sliding mode control</subject><subject>Trajectory control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctO3DAUjSoqFQFfwMZS1xmuH3ktR2FakEBF0KpL645zTT3NxNR2UPn7eghC9ca-9zx8pFMU5xxWnEN3se77zcPDSoCAlQReN6L-UBwLXnelrGR99N_7U3EW4w7yafOqao6LdPky4d4ZdusHGt30yHAa8pCcn1jvpxT8yLxlyHrcjlReBvdME7v320wxbPPXx980Usrsny79YncTzXs8QOuQnHXG4chu52hGYmuTZkw-xNPio8Ux0tnbfVL8-LL53l-VN9--Xvfrm9IoaFOJ20YNFgSRGiQCVbbheZRcmKqTIATx1nRCWmjAGgtSIdoM8m2lyKCQJ8X14jt43Omn4PYYXrRHp18XPjxqzClzNl3bATqDzWDIKGqxVUq12R46qKUilb0-L15Pwf-ZKSa983OYcnwtVKVqxaGGzJILywQfYyD7_isHfWhLL23pQ1v6ra2sOl9UjojeFd0BhEr-A5RukNo</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chen, Chun-Ta</creator><creator>Lien, Wei-Yuan</creator><creator>Chen, Chun-Ting</creator><creator>Twu, Ming-Jenq</creator><creator>Wu, Yu-Cheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8577-4424</orcidid><orcidid>https://orcid.org/0000-0001-6872-4898</orcidid><orcidid>https://orcid.org/0000-0002-7736-1803</orcidid><orcidid>https://orcid.org/0000-0003-2208-2927</orcidid><orcidid>https://orcid.org/0000-0002-6462-9321</orcidid></search><sort><creationdate>2020</creationdate><title>Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton With Pneumatic Artificial Muscle Actuators</title><author>Chen, Chun-Ta ; Lien, Wei-Yuan ; Chen, Chun-Ting ; Twu, Ming-Jenq ; Wu, Yu-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ab74df02ee4d3a0e5f71f02312c593022e18c923f070fcf034aaf12c1b54eca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>adaptive fuzzy sliding mode control</topic><topic>Artificial muscles</topic><topic>Control systems design</topic><topic>Dynamic models</topic><topic>Dynamics</topic><topic>Exoskeletons</topic><topic>Fuzzy control</topic><topic>Mathematical model</topic><topic>Modelling</topic><topic>Motion control</topic><topic>Pneumatic artificial muscle</topic><topic>Pneumatic systems</topic><topic>Rehabilitation</topic><topic>Robot kinematics</topic><topic>robotic exoskeleton</topic><topic>Robotics</topic><topic>Shoulder</topic><topic>Sliding mode control</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chun-Ta</creatorcontrib><creatorcontrib>Lien, Wei-Yuan</creatorcontrib><creatorcontrib>Chen, Chun-Ting</creatorcontrib><creatorcontrib>Twu, Ming-Jenq</creatorcontrib><creatorcontrib>Wu, Yu-Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chun-Ta</au><au>Lien, Wei-Yuan</au><au>Chen, Chun-Ting</au><au>Twu, Ming-Jenq</au><au>Wu, Yu-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton With Pneumatic Artificial Muscle Actuators</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>149796</spage><epage>149807</epage><pages>149796-149807</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents the design, dynamic modeling and motion control of a novel cable-driven upper limb robotic exoskeleton for a rehabilitation exercising. The proposed four degree-of-freedom robotic exoskeleton, actuated by pneumatic artificial muscle actuators, is characterized by a safe, compact, and lightweight structure, complying with the motion of an upper limb as close as possible. In order to perform a passive rehabilitation exercise, the dynamic models were developed by the Lagrange formulation in terms of quasi coordinates combined with the virtual work principle, and then the adaptive fuzzy sliding mode control was designed for the rehabilitation trajectory control. Finally, rehabilitation experiments were conducted to validate the prototype of upper limb robotic exoskeleton and the controller design.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3016726</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8577-4424</orcidid><orcidid>https://orcid.org/0000-0001-6872-4898</orcidid><orcidid>https://orcid.org/0000-0002-7736-1803</orcidid><orcidid>https://orcid.org/0000-0003-2208-2927</orcidid><orcidid>https://orcid.org/0000-0002-6462-9321</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.149796-149807 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3016726 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Actuators Adaptive control adaptive fuzzy sliding mode control Artificial muscles Control systems design Dynamic models Dynamics Exoskeletons Fuzzy control Mathematical model Modelling Motion control Pneumatic artificial muscle Pneumatic systems Rehabilitation Robot kinematics robotic exoskeleton Robotics Shoulder Sliding mode control Trajectory control |
title | Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton With Pneumatic Artificial Muscle Actuators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Modeling%20and%20Motion%20Control%20of%20a%20Cable-Driven%20Robotic%20Exoskeleton%20With%20Pneumatic%20Artificial%20Muscle%20Actuators&rft.jtitle=IEEE%20access&rft.au=Chen,%20Chun-Ta&rft.date=2020&rft.volume=8&rft.spage=149796&rft.epage=149807&rft.pages=149796-149807&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3016726&rft_dat=%3Cproquest_cross%3E2454641060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454641060&rft_id=info:pmid/&rft_ieee_id=9167205&rft_doaj_id=oai_doaj_org_article_6fd09ca7dcec4e8a8444818c090634e4&rfr_iscdi=true |