A Comparative Study of Improved Harmony Search Algorithm in Four Bar Mechanisms

There are problems that are difficult to solve through mathematical programming or by classical methods. These problems are called hard problems due to their high complexity or high dimension. On the other hand, mataheuristics intends to seek a better solution to a problem. The Improvement Harmony S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.148757-148778
Hauptverfasser: Flores-Pulido, Leticia, Portilla-Flores, Edgar Alfredo, Santiago-Valentin, Eric, Vega-Alvarado, Eduardo, Yanez, Maria Barbara Calva, Nino-Suarez, Paola Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148778
container_issue
container_start_page 148757
container_title IEEE access
container_volume 8
creator Flores-Pulido, Leticia
Portilla-Flores, Edgar Alfredo
Santiago-Valentin, Eric
Vega-Alvarado, Eduardo
Yanez, Maria Barbara Calva
Nino-Suarez, Paola Andrea
description There are problems that are difficult to solve through mathematical programming or by classical methods. These problems are called hard problems due to their high complexity or high dimension. On the other hand, mataheuristics intends to seek a better solution to a problem. The Improvement Harmony Search algorithm is proposed under modification of the bandwidth parameter increasing the quality of the exploitation of the solutions. That is why within the state of the art, are mentioned several versions of harmonic search. The state of the art is supports the fact that the algorithm belongs to the category of those who make modifications to its parameters. This research demonstrates the ability of ImHS to solve a problem of high complexity focused on solving four-bar mechanism designs, whose solutions imply high dimension and which are also classified as hard problems. The two problems that are solved in this investigation, are problems very attacked within the state of the art by various metaheuristics. A comparison is then made against previous solutions with traditional metaheuristics and other versions of harmony search algorithm. Finally, the effectiveness of performance is demonstrated, where proposed algorithm it exceeded five metaheuristic algorithms and five harmony search versions. An optimum is provided in an easy and useful way, the parametric statistics are improved and the number of feasible solutions is exceeded in NP-hard problems as in the case of problems with four-bar mechanisms.
doi_str_mv 10.1109/ACCESS.2020.3015942
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3015942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9165747</ieee_id><doaj_id>oai_doaj_org_article_ce825b6bdf2f4e1eb90d570a44c57396</doaj_id><sourcerecordid>2454643024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-615b90fc56ac00341019996f89109b3596674a88d67ee7205fb23b6f40f1d16a3</originalsourceid><addsrcrecordid>eNpNUctuwjAQjKpWKqJ8ARdLPYf67fiYRlCQqDjQni3HsSGIYOoEJP6-pkGoe9nVamdmR5MkYwQnCEH5lhfFdL2eYIjhhEDEJMUPyQAjLlPCCH_8Nz8no7bdwVhZXDExSFY5KHxz1EF39dmCdXeqLsA7sGiOwZ9tBeY6NP5wAWurg9mCfL_xoe62DagPYOZPAbzrAD6t2epD3TbtS_Lk9L61o1sfJt-z6VcxT5erj0WRL1NDBe1SjlgpoTOMawMhoQgiKSV3mYyOSsIk54LqLKu4sFZgyFyJSckdhQ5ViGsyTBY9b-X1Th1D3ehwUV7X6m_hw0bp0NVmb5WxGWYlLyuHHbXIRuGKCagpNUwQySPXa88VLf-cbNupXTR2iO8rTBnllEBM4xXpr0zwbRusu6siqK5BqD4IdQ1C3YKIqHGPqq21d4REnAkqyC_Jv4HG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454643024</pqid></control><display><type>article</type><title>A Comparative Study of Improved Harmony Search Algorithm in Four Bar Mechanisms</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Flores-Pulido, Leticia ; Portilla-Flores, Edgar Alfredo ; Santiago-Valentin, Eric ; Vega-Alvarado, Eduardo ; Yanez, Maria Barbara Calva ; Nino-Suarez, Paola Andrea</creator><creatorcontrib>Flores-Pulido, Leticia ; Portilla-Flores, Edgar Alfredo ; Santiago-Valentin, Eric ; Vega-Alvarado, Eduardo ; Yanez, Maria Barbara Calva ; Nino-Suarez, Paola Andrea</creatorcontrib><description>There are problems that are difficult to solve through mathematical programming or by classical methods. These problems are called hard problems due to their high complexity or high dimension. On the other hand, mataheuristics intends to seek a better solution to a problem. The Improvement Harmony Search algorithm is proposed under modification of the bandwidth parameter increasing the quality of the exploitation of the solutions. That is why within the state of the art, are mentioned several versions of harmonic search. The state of the art is supports the fact that the algorithm belongs to the category of those who make modifications to its parameters. This research demonstrates the ability of ImHS to solve a problem of high complexity focused on solving four-bar mechanism designs, whose solutions imply high dimension and which are also classified as hard problems. The two problems that are solved in this investigation, are problems very attacked within the state of the art by various metaheuristics. A comparison is then made against previous solutions with traditional metaheuristics and other versions of harmony search algorithm. Finally, the effectiveness of performance is demonstrated, where proposed algorithm it exceeded five metaheuristic algorithms and five harmony search versions. An optimum is provided in an easy and useful way, the parametric statistics are improved and the number of feasible solutions is exceeded in NP-hard problems as in the case of problems with four-bar mechanisms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3015942</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Algorithms performance ; Bandwidth ; Benchmark testing ; Comparative studies ; Complexity ; Convergence ; four-bar mechanism ; Harmonic analysis ; Heuristic algorithms ; Heuristic methods ; improved harmony search ; Mathematical analysis ; Mathematical programming ; mechatronic ; Optimization ; optimization problems ; Parameter modification ; Search algorithms ; Search problems</subject><ispartof>IEEE access, 2020, Vol.8, p.148757-148778</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-615b90fc56ac00341019996f89109b3596674a88d67ee7205fb23b6f40f1d16a3</citedby><cites>FETCH-LOGICAL-c474t-615b90fc56ac00341019996f89109b3596674a88d67ee7205fb23b6f40f1d16a3</cites><orcidid>0000-0001-9464-7996 ; 0000-0003-4785-5789 ; 0000-0003-3500-4880 ; 0000-0002-3197-9544 ; 0000-0002-8951-1346 ; 0000-0002-7561-2963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9165747$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Flores-Pulido, Leticia</creatorcontrib><creatorcontrib>Portilla-Flores, Edgar Alfredo</creatorcontrib><creatorcontrib>Santiago-Valentin, Eric</creatorcontrib><creatorcontrib>Vega-Alvarado, Eduardo</creatorcontrib><creatorcontrib>Yanez, Maria Barbara Calva</creatorcontrib><creatorcontrib>Nino-Suarez, Paola Andrea</creatorcontrib><title>A Comparative Study of Improved Harmony Search Algorithm in Four Bar Mechanisms</title><title>IEEE access</title><addtitle>Access</addtitle><description>There are problems that are difficult to solve through mathematical programming or by classical methods. These problems are called hard problems due to their high complexity or high dimension. On the other hand, mataheuristics intends to seek a better solution to a problem. The Improvement Harmony Search algorithm is proposed under modification of the bandwidth parameter increasing the quality of the exploitation of the solutions. That is why within the state of the art, are mentioned several versions of harmonic search. The state of the art is supports the fact that the algorithm belongs to the category of those who make modifications to its parameters. This research demonstrates the ability of ImHS to solve a problem of high complexity focused on solving four-bar mechanism designs, whose solutions imply high dimension and which are also classified as hard problems. The two problems that are solved in this investigation, are problems very attacked within the state of the art by various metaheuristics. A comparison is then made against previous solutions with traditional metaheuristics and other versions of harmony search algorithm. Finally, the effectiveness of performance is demonstrated, where proposed algorithm it exceeded five metaheuristic algorithms and five harmony search versions. An optimum is provided in an easy and useful way, the parametric statistics are improved and the number of feasible solutions is exceeded in NP-hard problems as in the case of problems with four-bar mechanisms.</description><subject>Algorithms</subject><subject>Algorithms performance</subject><subject>Bandwidth</subject><subject>Benchmark testing</subject><subject>Comparative studies</subject><subject>Complexity</subject><subject>Convergence</subject><subject>four-bar mechanism</subject><subject>Harmonic analysis</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>improved harmony search</subject><subject>Mathematical analysis</subject><subject>Mathematical programming</subject><subject>mechatronic</subject><subject>Optimization</subject><subject>optimization problems</subject><subject>Parameter modification</subject><subject>Search algorithms</subject><subject>Search problems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctuwjAQjKpWKqJ8ARdLPYf67fiYRlCQqDjQni3HsSGIYOoEJP6-pkGoe9nVamdmR5MkYwQnCEH5lhfFdL2eYIjhhEDEJMUPyQAjLlPCCH_8Nz8no7bdwVhZXDExSFY5KHxz1EF39dmCdXeqLsA7sGiOwZ9tBeY6NP5wAWurg9mCfL_xoe62DagPYOZPAbzrAD6t2epD3TbtS_Lk9L61o1sfJt-z6VcxT5erj0WRL1NDBe1SjlgpoTOMawMhoQgiKSV3mYyOSsIk54LqLKu4sFZgyFyJSckdhQ5ViGsyTBY9b-X1Th1D3ehwUV7X6m_hw0bp0NVmb5WxGWYlLyuHHbXIRuGKCagpNUwQySPXa88VLf-cbNupXTR2iO8rTBnllEBM4xXpr0zwbRusu6siqK5BqD4IdQ1C3YKIqHGPqq21d4REnAkqyC_Jv4HG</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Flores-Pulido, Leticia</creator><creator>Portilla-Flores, Edgar Alfredo</creator><creator>Santiago-Valentin, Eric</creator><creator>Vega-Alvarado, Eduardo</creator><creator>Yanez, Maria Barbara Calva</creator><creator>Nino-Suarez, Paola Andrea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9464-7996</orcidid><orcidid>https://orcid.org/0000-0003-4785-5789</orcidid><orcidid>https://orcid.org/0000-0003-3500-4880</orcidid><orcidid>https://orcid.org/0000-0002-3197-9544</orcidid><orcidid>https://orcid.org/0000-0002-8951-1346</orcidid><orcidid>https://orcid.org/0000-0002-7561-2963</orcidid></search><sort><creationdate>2020</creationdate><title>A Comparative Study of Improved Harmony Search Algorithm in Four Bar Mechanisms</title><author>Flores-Pulido, Leticia ; Portilla-Flores, Edgar Alfredo ; Santiago-Valentin, Eric ; Vega-Alvarado, Eduardo ; Yanez, Maria Barbara Calva ; Nino-Suarez, Paola Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-615b90fc56ac00341019996f89109b3596674a88d67ee7205fb23b6f40f1d16a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Algorithms performance</topic><topic>Bandwidth</topic><topic>Benchmark testing</topic><topic>Comparative studies</topic><topic>Complexity</topic><topic>Convergence</topic><topic>four-bar mechanism</topic><topic>Harmonic analysis</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>improved harmony search</topic><topic>Mathematical analysis</topic><topic>Mathematical programming</topic><topic>mechatronic</topic><topic>Optimization</topic><topic>optimization problems</topic><topic>Parameter modification</topic><topic>Search algorithms</topic><topic>Search problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores-Pulido, Leticia</creatorcontrib><creatorcontrib>Portilla-Flores, Edgar Alfredo</creatorcontrib><creatorcontrib>Santiago-Valentin, Eric</creatorcontrib><creatorcontrib>Vega-Alvarado, Eduardo</creatorcontrib><creatorcontrib>Yanez, Maria Barbara Calva</creatorcontrib><creatorcontrib>Nino-Suarez, Paola Andrea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores-Pulido, Leticia</au><au>Portilla-Flores, Edgar Alfredo</au><au>Santiago-Valentin, Eric</au><au>Vega-Alvarado, Eduardo</au><au>Yanez, Maria Barbara Calva</au><au>Nino-Suarez, Paola Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparative Study of Improved Harmony Search Algorithm in Four Bar Mechanisms</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>148757</spage><epage>148778</epage><pages>148757-148778</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>There are problems that are difficult to solve through mathematical programming or by classical methods. These problems are called hard problems due to their high complexity or high dimension. On the other hand, mataheuristics intends to seek a better solution to a problem. The Improvement Harmony Search algorithm is proposed under modification of the bandwidth parameter increasing the quality of the exploitation of the solutions. That is why within the state of the art, are mentioned several versions of harmonic search. The state of the art is supports the fact that the algorithm belongs to the category of those who make modifications to its parameters. This research demonstrates the ability of ImHS to solve a problem of high complexity focused on solving four-bar mechanism designs, whose solutions imply high dimension and which are also classified as hard problems. The two problems that are solved in this investigation, are problems very attacked within the state of the art by various metaheuristics. A comparison is then made against previous solutions with traditional metaheuristics and other versions of harmony search algorithm. Finally, the effectiveness of performance is demonstrated, where proposed algorithm it exceeded five metaheuristic algorithms and five harmony search versions. An optimum is provided in an easy and useful way, the parametric statistics are improved and the number of feasible solutions is exceeded in NP-hard problems as in the case of problems with four-bar mechanisms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3015942</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9464-7996</orcidid><orcidid>https://orcid.org/0000-0003-4785-5789</orcidid><orcidid>https://orcid.org/0000-0003-3500-4880</orcidid><orcidid>https://orcid.org/0000-0002-3197-9544</orcidid><orcidid>https://orcid.org/0000-0002-8951-1346</orcidid><orcidid>https://orcid.org/0000-0002-7561-2963</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.148757-148778
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3015942
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Algorithms performance
Bandwidth
Benchmark testing
Comparative studies
Complexity
Convergence
four-bar mechanism
Harmonic analysis
Heuristic algorithms
Heuristic methods
improved harmony search
Mathematical analysis
Mathematical programming
mechatronic
Optimization
optimization problems
Parameter modification
Search algorithms
Search problems
title A Comparative Study of Improved Harmony Search Algorithm in Four Bar Mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparative%20Study%20of%20Improved%20Harmony%20Search%20Algorithm%20in%20Four%20Bar%20Mechanisms&rft.jtitle=IEEE%20access&rft.au=Flores-Pulido,%20Leticia&rft.date=2020&rft.volume=8&rft.spage=148757&rft.epage=148778&rft.pages=148757-148778&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3015942&rft_dat=%3Cproquest_cross%3E2454643024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454643024&rft_id=info:pmid/&rft_ieee_id=9165747&rft_doaj_id=oai_doaj_org_article_ce825b6bdf2f4e1eb90d570a44c57396&rfr_iscdi=true