Deep Attention and Multi-scale Networks for Accurate Remote Sensing Image Segmentation
Remote sensing image segmentation is a challenging task in remote sensing image analysis. Remote sensing image segmentation has great significance in urban planning, crop planting, and other fields that need plentiful information about the land. Technically, this task suffers from the ultra-high res...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Qi, Xingqun Li, Kaiqi Liu, Pengkun Zhou, Xiaoguang Sun, Muyi |
description | Remote sensing image segmentation is a challenging task in remote sensing image analysis. Remote sensing image segmentation has great significance in urban planning, crop planting, and other fields that need plentiful information about the land. Technically, this task suffers from the ultra-high resolution, large shooting angle, and feature complexity of the remote sensing images. To address these issues, we propose a deep learning-based network called ATD-LinkNet with several customized modules. Specifically, we propose a replaceable module named AT block using multi-scale convolution and attention mechanism as the building block in ATD-LinkNet. AT block fuses different scale features and effectively utilizes the abundant spatial and semantic information in remote sensing images. To refine the nonlinear boundaries of internal objects in remote sensing images, we adopt the dense upsampling convolution in the decoder part of ATD-LinkNet. Experimentally, we enforce sufficient comparative experiments on two public remote sensing datasets (Potsdam and DeepGlobe Road Extraction). The results show our ATD-LinkNet achieves better performance against most state-of-the-art networks. We obtain 89.0% for pixel-level accuracy in the Potsdam dataset and 62.68% for mean Intersection over Union in the DeepGlobe Road Extraction dataset. |
doi_str_mv | 10.1109/ACCESS.2020.3015587 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3015587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9163377</ieee_id><doaj_id>oai_doaj_org_article_73538b6e280f4320bfe76bc5d7dc44cf</doaj_id><sourcerecordid>2454645226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-41b8642286abd7d5553c1257145479476bae7ebb267d9171cc475b7bbe378e783</originalsourceid><addsrcrecordid>eNpNkdtKAzEQhhdRsKhP0JsFr7fmnOxlqaeCB7DqbUiys2Vru6lJivj2pm4R52Ymw_zfDPmLYozRBGNUX01ns5vFYkIQQROKMOdKHhUjgkVdUU7F8b_6tLiIcYVyqNziclS8XwNsy2lK0KfO96Xpm_Jxt05dFZ1ZQ_kE6cuHj1i2PpRT53bBJChfYONzWkAfu35ZzjdmuX8tN5li9pzz4qQ16wgXh3xWvN3evM7uq4fnu_ls-lA5xlWqGLZKMEKUMLaRDeecOky4xIwzWTMprAEJ1hIhmxpL7ByT3EprgUoFUtGzYj5wG29Wehu6jQnf2ptO_zZ8WGoTUufWoGX-AGUFEIVaRgmyLWS-43mvY8y1mXU5sLbBf-4gJr3yu9Dn8zXJ9wjGCRF5ig5TLvgYA7R_WzHSez_04Ife-6EPfmTVeFB1APCnqLGgVEr6AwIshVM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454645226</pqid></control><display><type>article</type><title>Deep Attention and Multi-scale Networks for Accurate Remote Sensing Image Segmentation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qi, Xingqun ; Li, Kaiqi ; Liu, Pengkun ; Zhou, Xiaoguang ; Sun, Muyi</creator><creatorcontrib>Qi, Xingqun ; Li, Kaiqi ; Liu, Pengkun ; Zhou, Xiaoguang ; Sun, Muyi</creatorcontrib><description>Remote sensing image segmentation is a challenging task in remote sensing image analysis. Remote sensing image segmentation has great significance in urban planning, crop planting, and other fields that need plentiful information about the land. Technically, this task suffers from the ultra-high resolution, large shooting angle, and feature complexity of the remote sensing images. To address these issues, we propose a deep learning-based network called ATD-LinkNet with several customized modules. Specifically, we propose a replaceable module named AT block using multi-scale convolution and attention mechanism as the building block in ATD-LinkNet. AT block fuses different scale features and effectively utilizes the abundant spatial and semantic information in remote sensing images. To refine the nonlinear boundaries of internal objects in remote sensing images, we adopt the dense upsampling convolution in the decoder part of ATD-LinkNet. Experimentally, we enforce sufficient comparative experiments on two public remote sensing datasets (Potsdam and DeepGlobe Road Extraction). The results show our ATD-LinkNet achieves better performance against most state-of-the-art networks. We obtain 89.0% for pixel-level accuracy in the Potsdam dataset and 62.68% for mean Intersection over Union in the DeepGlobe Road Extraction dataset.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3015587</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attention ; Convolution ; Convolutional Neural Network ; Datasets ; Dense Upsampling Convolution ; Feature extraction ; Image analysis ; Image resolution ; Image segmentation ; Modules ; Multi-scale ; Object recognition ; Remote sensing ; Remote Sensing Image ; Roads ; Semantic Segmentation ; Semantics ; Urban planning</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-41b8642286abd7d5553c1257145479476bae7ebb267d9171cc475b7bbe378e783</citedby><cites>FETCH-LOGICAL-c458t-41b8642286abd7d5553c1257145479476bae7ebb267d9171cc475b7bbe378e783</cites><orcidid>0000-0002-9772-5707 ; 0000-0001-9506-7643 ; 0000-0002-0770-0224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9163377$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Qi, Xingqun</creatorcontrib><creatorcontrib>Li, Kaiqi</creatorcontrib><creatorcontrib>Liu, Pengkun</creatorcontrib><creatorcontrib>Zhou, Xiaoguang</creatorcontrib><creatorcontrib>Sun, Muyi</creatorcontrib><title>Deep Attention and Multi-scale Networks for Accurate Remote Sensing Image Segmentation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Remote sensing image segmentation is a challenging task in remote sensing image analysis. Remote sensing image segmentation has great significance in urban planning, crop planting, and other fields that need plentiful information about the land. Technically, this task suffers from the ultra-high resolution, large shooting angle, and feature complexity of the remote sensing images. To address these issues, we propose a deep learning-based network called ATD-LinkNet with several customized modules. Specifically, we propose a replaceable module named AT block using multi-scale convolution and attention mechanism as the building block in ATD-LinkNet. AT block fuses different scale features and effectively utilizes the abundant spatial and semantic information in remote sensing images. To refine the nonlinear boundaries of internal objects in remote sensing images, we adopt the dense upsampling convolution in the decoder part of ATD-LinkNet. Experimentally, we enforce sufficient comparative experiments on two public remote sensing datasets (Potsdam and DeepGlobe Road Extraction). The results show our ATD-LinkNet achieves better performance against most state-of-the-art networks. We obtain 89.0% for pixel-level accuracy in the Potsdam dataset and 62.68% for mean Intersection over Union in the DeepGlobe Road Extraction dataset.</description><subject>Attention</subject><subject>Convolution</subject><subject>Convolutional Neural Network</subject><subject>Datasets</subject><subject>Dense Upsampling Convolution</subject><subject>Feature extraction</subject><subject>Image analysis</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Modules</subject><subject>Multi-scale</subject><subject>Object recognition</subject><subject>Remote sensing</subject><subject>Remote Sensing Image</subject><subject>Roads</subject><subject>Semantic Segmentation</subject><subject>Semantics</subject><subject>Urban planning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdtKAzEQhhdRsKhP0JsFr7fmnOxlqaeCB7DqbUiys2Vru6lJivj2pm4R52Ymw_zfDPmLYozRBGNUX01ns5vFYkIQQROKMOdKHhUjgkVdUU7F8b_6tLiIcYVyqNziclS8XwNsy2lK0KfO96Xpm_Jxt05dFZ1ZQ_kE6cuHj1i2PpRT53bBJChfYONzWkAfu35ZzjdmuX8tN5li9pzz4qQ16wgXh3xWvN3evM7uq4fnu_ls-lA5xlWqGLZKMEKUMLaRDeecOky4xIwzWTMprAEJ1hIhmxpL7ByT3EprgUoFUtGzYj5wG29Wehu6jQnf2ptO_zZ8WGoTUufWoGX-AGUFEIVaRgmyLWS-43mvY8y1mXU5sLbBf-4gJr3yu9Dn8zXJ9wjGCRF5ig5TLvgYA7R_WzHSez_04Ife-6EPfmTVeFB1APCnqLGgVEr6AwIshVM</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Qi, Xingqun</creator><creator>Li, Kaiqi</creator><creator>Liu, Pengkun</creator><creator>Zhou, Xiaoguang</creator><creator>Sun, Muyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9772-5707</orcidid><orcidid>https://orcid.org/0000-0001-9506-7643</orcidid><orcidid>https://orcid.org/0000-0002-0770-0224</orcidid></search><sort><creationdate>20200101</creationdate><title>Deep Attention and Multi-scale Networks for Accurate Remote Sensing Image Segmentation</title><author>Qi, Xingqun ; Li, Kaiqi ; Liu, Pengkun ; Zhou, Xiaoguang ; Sun, Muyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-41b8642286abd7d5553c1257145479476bae7ebb267d9171cc475b7bbe378e783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attention</topic><topic>Convolution</topic><topic>Convolutional Neural Network</topic><topic>Datasets</topic><topic>Dense Upsampling Convolution</topic><topic>Feature extraction</topic><topic>Image analysis</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Modules</topic><topic>Multi-scale</topic><topic>Object recognition</topic><topic>Remote sensing</topic><topic>Remote Sensing Image</topic><topic>Roads</topic><topic>Semantic Segmentation</topic><topic>Semantics</topic><topic>Urban planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Xingqun</creatorcontrib><creatorcontrib>Li, Kaiqi</creatorcontrib><creatorcontrib>Liu, Pengkun</creatorcontrib><creatorcontrib>Zhou, Xiaoguang</creatorcontrib><creatorcontrib>Sun, Muyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Xingqun</au><au>Li, Kaiqi</au><au>Liu, Pengkun</au><au>Zhou, Xiaoguang</au><au>Sun, Muyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Attention and Multi-scale Networks for Accurate Remote Sensing Image Segmentation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Remote sensing image segmentation is a challenging task in remote sensing image analysis. Remote sensing image segmentation has great significance in urban planning, crop planting, and other fields that need plentiful information about the land. Technically, this task suffers from the ultra-high resolution, large shooting angle, and feature complexity of the remote sensing images. To address these issues, we propose a deep learning-based network called ATD-LinkNet with several customized modules. Specifically, we propose a replaceable module named AT block using multi-scale convolution and attention mechanism as the building block in ATD-LinkNet. AT block fuses different scale features and effectively utilizes the abundant spatial and semantic information in remote sensing images. To refine the nonlinear boundaries of internal objects in remote sensing images, we adopt the dense upsampling convolution in the decoder part of ATD-LinkNet. Experimentally, we enforce sufficient comparative experiments on two public remote sensing datasets (Potsdam and DeepGlobe Road Extraction). The results show our ATD-LinkNet achieves better performance against most state-of-the-art networks. We obtain 89.0% for pixel-level accuracy in the Potsdam dataset and 62.68% for mean Intersection over Union in the DeepGlobe Road Extraction dataset.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3015587</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9772-5707</orcidid><orcidid>https://orcid.org/0000-0001-9506-7643</orcidid><orcidid>https://orcid.org/0000-0002-0770-0224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3015587 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Attention Convolution Convolutional Neural Network Datasets Dense Upsampling Convolution Feature extraction Image analysis Image resolution Image segmentation Modules Multi-scale Object recognition Remote sensing Remote Sensing Image Roads Semantic Segmentation Semantics Urban planning |
title | Deep Attention and Multi-scale Networks for Accurate Remote Sensing Image Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Attention%20and%20Multi-scale%20Networks%20for%20Accurate%20Remote%20Sensing%20Image%20Segmentation&rft.jtitle=IEEE%20access&rft.au=Qi,%20Xingqun&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3015587&rft_dat=%3Cproquest_cross%3E2454645226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454645226&rft_id=info:pmid/&rft_ieee_id=9163377&rft_doaj_id=oai_doaj_org_article_73538b6e280f4320bfe76bc5d7dc44cf&rfr_iscdi=true |