An Automatic Garbage Classification System Based on Deep Learning

Garbage classification has always been an important issue in environmental protection, resource recycling and social livelihood. In order to improve the efficiency of front-end garbage collection, an automatic garbage classification system is proposed based on deep learning. Firstly, the overall sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.140019-140029
Hauptverfasser: Kang, Zhuang, Yang, Jie, Li, Guilan, Zhang, Zeyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140029
container_issue
container_start_page 140019
container_title IEEE access
container_volume 8
creator Kang, Zhuang
Yang, Jie
Li, Guilan
Zhang, Zeyi
description Garbage classification has always been an important issue in environmental protection, resource recycling and social livelihood. In order to improve the efficiency of front-end garbage collection, an automatic garbage classification system is proposed based on deep learning. Firstly, the overall system of the garbage bin is designed, including the hardware structure and the mobile app. Secondly, the proposed garbage classification algorithm is based on ResNet-34 algorithm, and its network structure is further optimized by three aspects, including the multi feature fusion of input images, the feature reuse of the residual unit, and the design of a new activation function. Finally, the superiority of the proposed classification algorithm is verified with the constructed garbage data. The classification accuracy of the proposed algorithm is enhanced by 1.01%. The experimental results show that the classification accuracy is as high as 99%, the classification cycle of the system is as quick as 0.95 s.
doi_str_mv 10.1109/ACCESS.2020.3010496
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3010496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9144549</ieee_id><doaj_id>oai_doaj_org_article_0833483d3833446eb307cd33607b3e73</doaj_id><sourcerecordid>2454642723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-56d0b9f633037c79712810a51ceb0baf74d7a512e2d66ef4ad6eaf3b095d46e23</originalsourceid><addsrcrecordid>eNpNUMFuwjAMjaZNGmJ8AZdKO5clcZq0x65jDAlpB7ZzlDYuKoKWJeXA3y9dEZovtp_8nu1HyJzRBWM0e8mLYrndLjjldAGUUZHJOzLhTGYxJCDv_9WPZOb9noZIA5SoCcnzNsrPfXc0fVNFK-NKs8OoOBjvm7qpAtq10fbiezxGr8ajjUL_hniKNmhc27S7J_JQm4PH2TVPyff78qv4iDefq3WRb-JKKNHHibS0zGoJQEFVKlOMp4yahFVY0tLUSlgVOo7cSom1MFaiqaGkWWKFRA5Tsh51bWf2-uSao3EX3ZlG_wGd22njwhMH1DQFEClYGHIgl0BVZQEkVSWggqD1PGqdXPdzRt_rfXd2bThfc5EIKbjiwxSMU5XrvHdY37Yyqgfr9Wi9HqzXV-sDaz6yGkS8MTImgnAGv-Y8fKk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454642723</pqid></control><display><type>article</type><title>An Automatic Garbage Classification System Based on Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kang, Zhuang ; Yang, Jie ; Li, Guilan ; Zhang, Zeyi</creator><creatorcontrib>Kang, Zhuang ; Yang, Jie ; Li, Guilan ; Zhang, Zeyi</creatorcontrib><description>Garbage classification has always been an important issue in environmental protection, resource recycling and social livelihood. In order to improve the efficiency of front-end garbage collection, an automatic garbage classification system is proposed based on deep learning. Firstly, the overall system of the garbage bin is designed, including the hardware structure and the mobile app. Secondly, the proposed garbage classification algorithm is based on ResNet-34 algorithm, and its network structure is further optimized by three aspects, including the multi feature fusion of input images, the feature reuse of the residual unit, and the design of a new activation function. Finally, the superiority of the proposed classification algorithm is verified with the constructed garbage data. The classification accuracy of the proposed algorithm is enhanced by 1.01%. The experimental results show that the classification accuracy is as high as 99%, the classification cycle of the system is as quick as 0.95 s.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3010496</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Applications programs ; Artificial intelligence ; Classification ; Classification algorithms ; Convolution ; Deep learning ; Environmental protection ; Feature extraction ; Garbage collection ; Hardware ; Image classification ; Machine learning ; Mobile computing ; neural networks ; Servomotors ; Waste containers</subject><ispartof>IEEE access, 2020, Vol.8, p.140019-140029</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-56d0b9f633037c79712810a51ceb0baf74d7a512e2d66ef4ad6eaf3b095d46e23</citedby><cites>FETCH-LOGICAL-c474t-56d0b9f633037c79712810a51ceb0baf74d7a512e2d66ef4ad6eaf3b095d46e23</cites><orcidid>0000-0001-9945-4472 ; 0000-0002-5511-705X ; 0000-0002-1839-252X ; 0000-0001-5191-2980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9144549$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kang, Zhuang</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Li, Guilan</creatorcontrib><creatorcontrib>Zhang, Zeyi</creatorcontrib><title>An Automatic Garbage Classification System Based on Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Garbage classification has always been an important issue in environmental protection, resource recycling and social livelihood. In order to improve the efficiency of front-end garbage collection, an automatic garbage classification system is proposed based on deep learning. Firstly, the overall system of the garbage bin is designed, including the hardware structure and the mobile app. Secondly, the proposed garbage classification algorithm is based on ResNet-34 algorithm, and its network structure is further optimized by three aspects, including the multi feature fusion of input images, the feature reuse of the residual unit, and the design of a new activation function. Finally, the superiority of the proposed classification algorithm is verified with the constructed garbage data. The classification accuracy of the proposed algorithm is enhanced by 1.01%. The experimental results show that the classification accuracy is as high as 99%, the classification cycle of the system is as quick as 0.95 s.</description><subject>Algorithms</subject><subject>Applications programs</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Environmental protection</subject><subject>Feature extraction</subject><subject>Garbage collection</subject><subject>Hardware</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>neural networks</subject><subject>Servomotors</subject><subject>Waste containers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFuwjAMjaZNGmJ8AZdKO5clcZq0x65jDAlpB7ZzlDYuKoKWJeXA3y9dEZovtp_8nu1HyJzRBWM0e8mLYrndLjjldAGUUZHJOzLhTGYxJCDv_9WPZOb9noZIA5SoCcnzNsrPfXc0fVNFK-NKs8OoOBjvm7qpAtq10fbiezxGr8ajjUL_hniKNmhc27S7J_JQm4PH2TVPyff78qv4iDefq3WRb-JKKNHHibS0zGoJQEFVKlOMp4yahFVY0tLUSlgVOo7cSom1MFaiqaGkWWKFRA5Tsh51bWf2-uSao3EX3ZlG_wGd22njwhMH1DQFEClYGHIgl0BVZQEkVSWggqD1PGqdXPdzRt_rfXd2bThfc5EIKbjiwxSMU5XrvHdY37Yyqgfr9Wi9HqzXV-sDaz6yGkS8MTImgnAGv-Y8fKk</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kang, Zhuang</creator><creator>Yang, Jie</creator><creator>Li, Guilan</creator><creator>Zhang, Zeyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9945-4472</orcidid><orcidid>https://orcid.org/0000-0002-5511-705X</orcidid><orcidid>https://orcid.org/0000-0002-1839-252X</orcidid><orcidid>https://orcid.org/0000-0001-5191-2980</orcidid></search><sort><creationdate>2020</creationdate><title>An Automatic Garbage Classification System Based on Deep Learning</title><author>Kang, Zhuang ; Yang, Jie ; Li, Guilan ; Zhang, Zeyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-56d0b9f633037c79712810a51ceb0baf74d7a512e2d66ef4ad6eaf3b095d46e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Applications programs</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Environmental protection</topic><topic>Feature extraction</topic><topic>Garbage collection</topic><topic>Hardware</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>neural networks</topic><topic>Servomotors</topic><topic>Waste containers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Zhuang</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Li, Guilan</creatorcontrib><creatorcontrib>Zhang, Zeyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Zhuang</au><au>Yang, Jie</au><au>Li, Guilan</au><au>Zhang, Zeyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Automatic Garbage Classification System Based on Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>140019</spage><epage>140029</epage><pages>140019-140029</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Garbage classification has always been an important issue in environmental protection, resource recycling and social livelihood. In order to improve the efficiency of front-end garbage collection, an automatic garbage classification system is proposed based on deep learning. Firstly, the overall system of the garbage bin is designed, including the hardware structure and the mobile app. Secondly, the proposed garbage classification algorithm is based on ResNet-34 algorithm, and its network structure is further optimized by three aspects, including the multi feature fusion of input images, the feature reuse of the residual unit, and the design of a new activation function. Finally, the superiority of the proposed classification algorithm is verified with the constructed garbage data. The classification accuracy of the proposed algorithm is enhanced by 1.01%. The experimental results show that the classification accuracy is as high as 99%, the classification cycle of the system is as quick as 0.95 s.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3010496</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9945-4472</orcidid><orcidid>https://orcid.org/0000-0002-5511-705X</orcidid><orcidid>https://orcid.org/0000-0002-1839-252X</orcidid><orcidid>https://orcid.org/0000-0001-5191-2980</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.140019-140029
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3010496
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Applications programs
Artificial intelligence
Classification
Classification algorithms
Convolution
Deep learning
Environmental protection
Feature extraction
Garbage collection
Hardware
Image classification
Machine learning
Mobile computing
neural networks
Servomotors
Waste containers
title An Automatic Garbage Classification System Based on Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Automatic%20Garbage%20Classification%20System%20Based%20on%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Kang,%20Zhuang&rft.date=2020&rft.volume=8&rft.spage=140019&rft.epage=140029&rft.pages=140019-140029&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3010496&rft_dat=%3Cproquest_cross%3E2454642723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454642723&rft_id=info:pmid/&rft_ieee_id=9144549&rft_doaj_id=oai_doaj_org_article_0833483d3833446eb307cd33607b3e73&rfr_iscdi=true