Structural Image De-Identification for Privacy-Preserving Deep Learning

Due to the risk of data leakage while training deep learning models in a shared environment, we propose a new privacy-preserving deep learning (PPDL) method using a structural image de-identification approach for object classification. The proposed structural image de-identification approach is desi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.119848-119862
Hauptverfasser: Ko, Dong-Hyun, Choi, Seok-Hwan, Shin, Jin-Myeong, Liu, Peng, Choi, Yoon-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119862
container_issue
container_start_page 119848
container_title IEEE access
container_volume 8
creator Ko, Dong-Hyun
Choi, Seok-Hwan
Shin, Jin-Myeong
Liu, Peng
Choi, Yoon-Ho
description Due to the risk of data leakage while training deep learning models in a shared environment, we propose a new privacy-preserving deep learning (PPDL) method using a structural image de-identification approach for object classification. The proposed structural image de-identification approach is designed based on the fact that the degree of structural distortion of an image object has the greatest impact on human's perceptual system. Thus, by modifying only the structural parts of the original one using order preserving encryption(OPE), the proposed structural image de-identification approach decreases only the recognition rate by human. From the experimental results using different standard datasets, we show that the object classification accuracy of the proposed structural image de-identification method is almost the same as the deep learning performance for non-encrypted images, without revealing the original image contents including sensitive information. Also, by handling the trade-off between object classification accuracy and privacy protection for the de-identified image, we experimentally find the optimal size of input image for the proposed structural image de-identification approach.
doi_str_mv 10.1109/ACCESS.2020.3005911
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3005911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9129656</ieee_id><doaj_id>oai_doaj_org_article_85794be3897b42da88bdfc9504752f46</doaj_id><sourcerecordid>2454639128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a5831c6fa1a870df758b9fdaee452a005b71f1829f0ad4c12b40110139fa60793</originalsourceid><addsrcrecordid>eNpNUU1rwkAQDaWFivUXeAn0HLufye5RrLWCUMH2vEw2s7Kiid1EwX_ftZHSucwH772Z4SXJmJIJpUS_TGez-WYzYYSRCSdEakrvkgGjuc645Pn9v_oxGbXtjsRQcSSLQbLYdOFku1OAfbo8wBbTV8yWFdadd95C55s6dU1I18GfwV6ydcAWw9nX2wjEY7pCCHXsnpIHB_sWR7c8TL7e5p-z92z1sVjOpqvMCqK6DKTi1OYOKKiCVK6QqtSuAkQhGcTjy4I6qph2BCphKSsFiU9Srh3kpNB8mCx73aqBnTkGf4BwMQ148ztowtZA6Lzdo1Gy0KJErnRRClaBUmXlrJZEFJI5kUet517rGJrvE7ad2TWnUMfzDRMyAjRlKqJ4j7KhaduA7m8rJeZqgOkNMFcDzM2AyBr3LI-If4woqHOZ8x98S3_V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454639128</pqid></control><display><type>article</type><title>Structural Image De-Identification for Privacy-Preserving Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ko, Dong-Hyun ; Choi, Seok-Hwan ; Shin, Jin-Myeong ; Liu, Peng ; Choi, Yoon-Ho</creator><creatorcontrib>Ko, Dong-Hyun ; Choi, Seok-Hwan ; Shin, Jin-Myeong ; Liu, Peng ; Choi, Yoon-Ho</creatorcontrib><description>Due to the risk of data leakage while training deep learning models in a shared environment, we propose a new privacy-preserving deep learning (PPDL) method using a structural image de-identification approach for object classification. The proposed structural image de-identification approach is designed based on the fact that the degree of structural distortion of an image object has the greatest impact on human's perceptual system. Thus, by modifying only the structural parts of the original one using order preserving encryption(OPE), the proposed structural image de-identification approach decreases only the recognition rate by human. From the experimental results using different standard datasets, we show that the object classification accuracy of the proposed structural image de-identification method is almost the same as the deep learning performance for non-encrypted images, without revealing the original image contents including sensitive information. Also, by handling the trade-off between object classification accuracy and privacy protection for the de-identified image, we experimentally find the optimal size of input image for the proposed structural image de-identification approach.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3005911</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; Computational modeling ; Data models ; Data privacy ; Deep learning ; Encryption ; Environment models ; Identification ; Identification methods ; Image classification ; image encryption ; Machine learning ; Object recognition ; Privacy ; structural similarity ; vector graphics</subject><ispartof>IEEE access, 2020, Vol.8, p.119848-119862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a5831c6fa1a870df758b9fdaee452a005b71f1829f0ad4c12b40110139fa60793</citedby><cites>FETCH-LOGICAL-c408t-a5831c6fa1a870df758b9fdaee452a005b71f1829f0ad4c12b40110139fa60793</cites><orcidid>0000-0002-5241-4702 ; 0000-0003-3590-6024 ; 0000-0002-3556-5082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9129656$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ko, Dong-Hyun</creatorcontrib><creatorcontrib>Choi, Seok-Hwan</creatorcontrib><creatorcontrib>Shin, Jin-Myeong</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Choi, Yoon-Ho</creatorcontrib><title>Structural Image De-Identification for Privacy-Preserving Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Due to the risk of data leakage while training deep learning models in a shared environment, we propose a new privacy-preserving deep learning (PPDL) method using a structural image de-identification approach for object classification. The proposed structural image de-identification approach is designed based on the fact that the degree of structural distortion of an image object has the greatest impact on human's perceptual system. Thus, by modifying only the structural parts of the original one using order preserving encryption(OPE), the proposed structural image de-identification approach decreases only the recognition rate by human. From the experimental results using different standard datasets, we show that the object classification accuracy of the proposed structural image de-identification method is almost the same as the deep learning performance for non-encrypted images, without revealing the original image contents including sensitive information. Also, by handling the trade-off between object classification accuracy and privacy protection for the de-identified image, we experimentally find the optimal size of input image for the proposed structural image de-identification approach.</description><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Deep learning</subject><subject>Encryption</subject><subject>Environment models</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Image classification</subject><subject>image encryption</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Privacy</subject><subject>structural similarity</subject><subject>vector graphics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQDaWFivUXeAn0HLufye5RrLWCUMH2vEw2s7Kiid1EwX_ftZHSucwH772Z4SXJmJIJpUS_TGez-WYzYYSRCSdEakrvkgGjuc645Pn9v_oxGbXtjsRQcSSLQbLYdOFku1OAfbo8wBbTV8yWFdadd95C55s6dU1I18GfwV6ydcAWw9nX2wjEY7pCCHXsnpIHB_sWR7c8TL7e5p-z92z1sVjOpqvMCqK6DKTi1OYOKKiCVK6QqtSuAkQhGcTjy4I6qph2BCphKSsFiU9Srh3kpNB8mCx73aqBnTkGf4BwMQ148ztowtZA6Lzdo1Gy0KJErnRRClaBUmXlrJZEFJI5kUet517rGJrvE7ad2TWnUMfzDRMyAjRlKqJ4j7KhaduA7m8rJeZqgOkNMFcDzM2AyBr3LI-If4woqHOZ8x98S3_V</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ko, Dong-Hyun</creator><creator>Choi, Seok-Hwan</creator><creator>Shin, Jin-Myeong</creator><creator>Liu, Peng</creator><creator>Choi, Yoon-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5241-4702</orcidid><orcidid>https://orcid.org/0000-0003-3590-6024</orcidid><orcidid>https://orcid.org/0000-0002-3556-5082</orcidid></search><sort><creationdate>2020</creationdate><title>Structural Image De-Identification for Privacy-Preserving Deep Learning</title><author>Ko, Dong-Hyun ; Choi, Seok-Hwan ; Shin, Jin-Myeong ; Liu, Peng ; Choi, Yoon-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a5831c6fa1a870df758b9fdaee452a005b71f1829f0ad4c12b40110139fa60793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Deep learning</topic><topic>Encryption</topic><topic>Environment models</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Image classification</topic><topic>image encryption</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Privacy</topic><topic>structural similarity</topic><topic>vector graphics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Dong-Hyun</creatorcontrib><creatorcontrib>Choi, Seok-Hwan</creatorcontrib><creatorcontrib>Shin, Jin-Myeong</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Choi, Yoon-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Dong-Hyun</au><au>Choi, Seok-Hwan</au><au>Shin, Jin-Myeong</au><au>Liu, Peng</au><au>Choi, Yoon-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Image De-Identification for Privacy-Preserving Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>119848</spage><epage>119862</epage><pages>119848-119862</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Due to the risk of data leakage while training deep learning models in a shared environment, we propose a new privacy-preserving deep learning (PPDL) method using a structural image de-identification approach for object classification. The proposed structural image de-identification approach is designed based on the fact that the degree of structural distortion of an image object has the greatest impact on human's perceptual system. Thus, by modifying only the structural parts of the original one using order preserving encryption(OPE), the proposed structural image de-identification approach decreases only the recognition rate by human. From the experimental results using different standard datasets, we show that the object classification accuracy of the proposed structural image de-identification method is almost the same as the deep learning performance for non-encrypted images, without revealing the original image contents including sensitive information. Also, by handling the trade-off between object classification accuracy and privacy protection for the de-identified image, we experimentally find the optimal size of input image for the proposed structural image de-identification approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3005911</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5241-4702</orcidid><orcidid>https://orcid.org/0000-0003-3590-6024</orcidid><orcidid>https://orcid.org/0000-0002-3556-5082</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.119848-119862
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3005911
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cloud computing
Computational modeling
Data models
Data privacy
Deep learning
Encryption
Environment models
Identification
Identification methods
Image classification
image encryption
Machine learning
Object recognition
Privacy
structural similarity
vector graphics
title Structural Image De-Identification for Privacy-Preserving Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Image%20De-Identification%20for%20Privacy-Preserving%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Ko,%20Dong-Hyun&rft.date=2020&rft.volume=8&rft.spage=119848&rft.epage=119862&rft.pages=119848-119862&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3005911&rft_dat=%3Cproquest_cross%3E2454639128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454639128&rft_id=info:pmid/&rft_ieee_id=9129656&rft_doaj_id=oai_doaj_org_article_85794be3897b42da88bdfc9504752f46&rfr_iscdi=true