Structural Image De-Identification for Privacy-Preserving Deep Learning
Due to the risk of data leakage while training deep learning models in a shared environment, we propose a new privacy-preserving deep learning (PPDL) method using a structural image de-identification approach for object classification. The proposed structural image de-identification approach is desi...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.119848-119862 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119862 |
---|---|
container_issue | |
container_start_page | 119848 |
container_title | IEEE access |
container_volume | 8 |
creator | Ko, Dong-Hyun Choi, Seok-Hwan Shin, Jin-Myeong Liu, Peng Choi, Yoon-Ho |
description | Due to the risk of data leakage while training deep learning models in a shared environment, we propose a new privacy-preserving deep learning (PPDL) method using a structural image de-identification approach for object classification. The proposed structural image de-identification approach is designed based on the fact that the degree of structural distortion of an image object has the greatest impact on human's perceptual system. Thus, by modifying only the structural parts of the original one using order preserving encryption(OPE), the proposed structural image de-identification approach decreases only the recognition rate by human. From the experimental results using different standard datasets, we show that the object classification accuracy of the proposed structural image de-identification method is almost the same as the deep learning performance for non-encrypted images, without revealing the original image contents including sensitive information. Also, by handling the trade-off between object classification accuracy and privacy protection for the de-identified image, we experimentally find the optimal size of input image for the proposed structural image de-identification approach. |
doi_str_mv | 10.1109/ACCESS.2020.3005911 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3005911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9129656</ieee_id><doaj_id>oai_doaj_org_article_85794be3897b42da88bdfc9504752f46</doaj_id><sourcerecordid>2454639128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a5831c6fa1a870df758b9fdaee452a005b71f1829f0ad4c12b40110139fa60793</originalsourceid><addsrcrecordid>eNpNUU1rwkAQDaWFivUXeAn0HLufye5RrLWCUMH2vEw2s7Kiid1EwX_ftZHSucwH772Z4SXJmJIJpUS_TGez-WYzYYSRCSdEakrvkgGjuc645Pn9v_oxGbXtjsRQcSSLQbLYdOFku1OAfbo8wBbTV8yWFdadd95C55s6dU1I18GfwV6ydcAWw9nX2wjEY7pCCHXsnpIHB_sWR7c8TL7e5p-z92z1sVjOpqvMCqK6DKTi1OYOKKiCVK6QqtSuAkQhGcTjy4I6qph2BCphKSsFiU9Srh3kpNB8mCx73aqBnTkGf4BwMQ148ztowtZA6Lzdo1Gy0KJErnRRClaBUmXlrJZEFJI5kUet517rGJrvE7ad2TWnUMfzDRMyAjRlKqJ4j7KhaduA7m8rJeZqgOkNMFcDzM2AyBr3LI-If4woqHOZ8x98S3_V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454639128</pqid></control><display><type>article</type><title>Structural Image De-Identification for Privacy-Preserving Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ko, Dong-Hyun ; Choi, Seok-Hwan ; Shin, Jin-Myeong ; Liu, Peng ; Choi, Yoon-Ho</creator><creatorcontrib>Ko, Dong-Hyun ; Choi, Seok-Hwan ; Shin, Jin-Myeong ; Liu, Peng ; Choi, Yoon-Ho</creatorcontrib><description>Due to the risk of data leakage while training deep learning models in a shared environment, we propose a new privacy-preserving deep learning (PPDL) method using a structural image de-identification approach for object classification. The proposed structural image de-identification approach is designed based on the fact that the degree of structural distortion of an image object has the greatest impact on human's perceptual system. Thus, by modifying only the structural parts of the original one using order preserving encryption(OPE), the proposed structural image de-identification approach decreases only the recognition rate by human. From the experimental results using different standard datasets, we show that the object classification accuracy of the proposed structural image de-identification method is almost the same as the deep learning performance for non-encrypted images, without revealing the original image contents including sensitive information. Also, by handling the trade-off between object classification accuracy and privacy protection for the de-identified image, we experimentally find the optimal size of input image for the proposed structural image de-identification approach.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3005911</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; Computational modeling ; Data models ; Data privacy ; Deep learning ; Encryption ; Environment models ; Identification ; Identification methods ; Image classification ; image encryption ; Machine learning ; Object recognition ; Privacy ; structural similarity ; vector graphics</subject><ispartof>IEEE access, 2020, Vol.8, p.119848-119862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a5831c6fa1a870df758b9fdaee452a005b71f1829f0ad4c12b40110139fa60793</citedby><cites>FETCH-LOGICAL-c408t-a5831c6fa1a870df758b9fdaee452a005b71f1829f0ad4c12b40110139fa60793</cites><orcidid>0000-0002-5241-4702 ; 0000-0003-3590-6024 ; 0000-0002-3556-5082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9129656$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ko, Dong-Hyun</creatorcontrib><creatorcontrib>Choi, Seok-Hwan</creatorcontrib><creatorcontrib>Shin, Jin-Myeong</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Choi, Yoon-Ho</creatorcontrib><title>Structural Image De-Identification for Privacy-Preserving Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Due to the risk of data leakage while training deep learning models in a shared environment, we propose a new privacy-preserving deep learning (PPDL) method using a structural image de-identification approach for object classification. The proposed structural image de-identification approach is designed based on the fact that the degree of structural distortion of an image object has the greatest impact on human's perceptual system. Thus, by modifying only the structural parts of the original one using order preserving encryption(OPE), the proposed structural image de-identification approach decreases only the recognition rate by human. From the experimental results using different standard datasets, we show that the object classification accuracy of the proposed structural image de-identification method is almost the same as the deep learning performance for non-encrypted images, without revealing the original image contents including sensitive information. Also, by handling the trade-off between object classification accuracy and privacy protection for the de-identified image, we experimentally find the optimal size of input image for the proposed structural image de-identification approach.</description><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Deep learning</subject><subject>Encryption</subject><subject>Environment models</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Image classification</subject><subject>image encryption</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Privacy</subject><subject>structural similarity</subject><subject>vector graphics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQDaWFivUXeAn0HLufye5RrLWCUMH2vEw2s7Kiid1EwX_ftZHSucwH772Z4SXJmJIJpUS_TGez-WYzYYSRCSdEakrvkgGjuc645Pn9v_oxGbXtjsRQcSSLQbLYdOFku1OAfbo8wBbTV8yWFdadd95C55s6dU1I18GfwV6ydcAWw9nX2wjEY7pCCHXsnpIHB_sWR7c8TL7e5p-z92z1sVjOpqvMCqK6DKTi1OYOKKiCVK6QqtSuAkQhGcTjy4I6qph2BCphKSsFiU9Srh3kpNB8mCx73aqBnTkGf4BwMQ148ztowtZA6Lzdo1Gy0KJErnRRClaBUmXlrJZEFJI5kUet517rGJrvE7ad2TWnUMfzDRMyAjRlKqJ4j7KhaduA7m8rJeZqgOkNMFcDzM2AyBr3LI-If4woqHOZ8x98S3_V</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ko, Dong-Hyun</creator><creator>Choi, Seok-Hwan</creator><creator>Shin, Jin-Myeong</creator><creator>Liu, Peng</creator><creator>Choi, Yoon-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5241-4702</orcidid><orcidid>https://orcid.org/0000-0003-3590-6024</orcidid><orcidid>https://orcid.org/0000-0002-3556-5082</orcidid></search><sort><creationdate>2020</creationdate><title>Structural Image De-Identification for Privacy-Preserving Deep Learning</title><author>Ko, Dong-Hyun ; Choi, Seok-Hwan ; Shin, Jin-Myeong ; Liu, Peng ; Choi, Yoon-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a5831c6fa1a870df758b9fdaee452a005b71f1829f0ad4c12b40110139fa60793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Deep learning</topic><topic>Encryption</topic><topic>Environment models</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Image classification</topic><topic>image encryption</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Privacy</topic><topic>structural similarity</topic><topic>vector graphics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Dong-Hyun</creatorcontrib><creatorcontrib>Choi, Seok-Hwan</creatorcontrib><creatorcontrib>Shin, Jin-Myeong</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Choi, Yoon-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Dong-Hyun</au><au>Choi, Seok-Hwan</au><au>Shin, Jin-Myeong</au><au>Liu, Peng</au><au>Choi, Yoon-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Image De-Identification for Privacy-Preserving Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>119848</spage><epage>119862</epage><pages>119848-119862</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Due to the risk of data leakage while training deep learning models in a shared environment, we propose a new privacy-preserving deep learning (PPDL) method using a structural image de-identification approach for object classification. The proposed structural image de-identification approach is designed based on the fact that the degree of structural distortion of an image object has the greatest impact on human's perceptual system. Thus, by modifying only the structural parts of the original one using order preserving encryption(OPE), the proposed structural image de-identification approach decreases only the recognition rate by human. From the experimental results using different standard datasets, we show that the object classification accuracy of the proposed structural image de-identification method is almost the same as the deep learning performance for non-encrypted images, without revealing the original image contents including sensitive information. Also, by handling the trade-off between object classification accuracy and privacy protection for the de-identified image, we experimentally find the optimal size of input image for the proposed structural image de-identification approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3005911</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5241-4702</orcidid><orcidid>https://orcid.org/0000-0003-3590-6024</orcidid><orcidid>https://orcid.org/0000-0002-3556-5082</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.119848-119862 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3005911 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cloud computing Computational modeling Data models Data privacy Deep learning Encryption Environment models Identification Identification methods Image classification image encryption Machine learning Object recognition Privacy structural similarity vector graphics |
title | Structural Image De-Identification for Privacy-Preserving Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Image%20De-Identification%20for%20Privacy-Preserving%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Ko,%20Dong-Hyun&rft.date=2020&rft.volume=8&rft.spage=119848&rft.epage=119862&rft.pages=119848-119862&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3005911&rft_dat=%3Cproquest_cross%3E2454639128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454639128&rft_id=info:pmid/&rft_ieee_id=9129656&rft_doaj_id=oai_doaj_org_article_85794be3897b42da88bdfc9504752f46&rfr_iscdi=true |