Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism
Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a s...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.134964-134975 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134975 |
---|---|
container_issue | |
container_start_page | 134964 |
container_title | IEEE access |
container_volume | 8 |
creator | Cheng, Yan Yao, Leibo Xiang, Guoxiong Zhang, Guanghe Tang, Tianwei Zhong, Linhui |
description | Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a sentence, it ignores the contextual semantic information between words. Bidirectional GRU can make up for the shortcomings that CNN can't extract contextual semantic information of long text, but it can't extract the local features of the text as well as CNN. Therefore, we propose a multi-channel model that combines the CNN and the bidirectional gated recurrent unit network with attention mechanism (MC-AttCNN-AttBiGRU). The model can pay attention to the words that are important to the sentiment polarity classification in the sentence through the attention mechanism and combine the advantages of CNN to extract local features of text and bidirectional GRU to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the IMDB dataset and Yelp 2015 dataset show that the proposed model can extract more rich text features than other baseline models, and can achieve better results than other baseline models. |
doi_str_mv | 10.1109/ACCESS.2020.3005823 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3005823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9127893</ieee_id><doaj_id>oai_doaj_org_article_7a765ccc45554d6f98d7a7117afd0d07</doaj_id><sourcerecordid>2454641533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-889094b3cba72a12c56ee8f01dac4bba6c05ecbc3b4557763e0a8ec2fee01bae3</originalsourceid><addsrcrecordid>eNpNkV1L5TAQhsviwor6C7wJ7HWP-Wia9PJY_AI_wKPsZZgm0zWHnlaTHNB_v-lWxLmYCS_zvEN4i-KU0RVjtDlbt-3FZrPilNOVoFRqLn4Uh5zVTSmkqA--vX8VJzFuaS6dJakOi90TvieywTH5XW7kIfg8IPlpJOsRho_oIzmHiI5k5W4_JF-2LzCOOJD2_p7A6Mi5dz6gnRkYyNXjM_nj0wtZpzTbzhjajPi4Oy5-9jBEPPmcR8Xz5cVTe13ePlzdtOvb0lZUp1LrhjZVJ2wHigPjVtaIuqfMga26DmpLJdrOiq6SUqlaIAWNlveIlHWA4qi4WXzdBFvzGvwOwoeZwJv_whT-GgjJ2wGNAlVLa212kpWr-0a7LDGmoHfUUZW9fi9er2F622NMZjvtQ_5pNLySVV0xKUTeEsuWDVOMAfuvq4yaOSazxGTmmMxnTJk6XSiPiF9Ew7jSjRD_AFqgjt4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454641533</pqid></control><display><type>article</type><title>Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Cheng, Yan ; Yao, Leibo ; Xiang, Guoxiong ; Zhang, Guanghe ; Tang, Tianwei ; Zhong, Linhui</creator><creatorcontrib>Cheng, Yan ; Yao, Leibo ; Xiang, Guoxiong ; Zhang, Guanghe ; Tang, Tianwei ; Zhong, Linhui</creatorcontrib><description>Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a sentence, it ignores the contextual semantic information between words. Bidirectional GRU can make up for the shortcomings that CNN can't extract contextual semantic information of long text, but it can't extract the local features of the text as well as CNN. Therefore, we propose a multi-channel model that combines the CNN and the bidirectional gated recurrent unit network with attention mechanism (MC-AttCNN-AttBiGRU). The model can pay attention to the words that are important to the sentiment polarity classification in the sentence through the attention mechanism and combine the advantages of CNN to extract local features of text and bidirectional GRU to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the IMDB dataset and Yelp 2015 dataset show that the proposed model can extract more rich text features than other baseline models, and can achieve better results than other baseline models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3005823</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; attention mechanism ; bidirectional gated recurrent unit network ; Context modeling ; Convolutional neural network ; Data mining ; Datasets ; Feature extraction ; Machine learning ; Neural networks ; Recurrent neural networks ; Semantics ; Sentiment analysis ; Task analysis ; text sentiment orientation analysis ; Words (language)</subject><ispartof>IEEE access, 2020, Vol.8, p.134964-134975</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-889094b3cba72a12c56ee8f01dac4bba6c05ecbc3b4557763e0a8ec2fee01bae3</citedby><cites>FETCH-LOGICAL-c408t-889094b3cba72a12c56ee8f01dac4bba6c05ecbc3b4557763e0a8ec2fee01bae3</cites><orcidid>0000-0002-9094-5379 ; 0000-0002-7849-8270 ; 0000-0002-0160-7213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9127893$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Cheng, Yan</creatorcontrib><creatorcontrib>Yao, Leibo</creatorcontrib><creatorcontrib>Xiang, Guoxiong</creatorcontrib><creatorcontrib>Zhang, Guanghe</creatorcontrib><creatorcontrib>Tang, Tianwei</creatorcontrib><creatorcontrib>Zhong, Linhui</creatorcontrib><title>Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism</title><title>IEEE access</title><addtitle>Access</addtitle><description>Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a sentence, it ignores the contextual semantic information between words. Bidirectional GRU can make up for the shortcomings that CNN can't extract contextual semantic information of long text, but it can't extract the local features of the text as well as CNN. Therefore, we propose a multi-channel model that combines the CNN and the bidirectional gated recurrent unit network with attention mechanism (MC-AttCNN-AttBiGRU). The model can pay attention to the words that are important to the sentiment polarity classification in the sentence through the attention mechanism and combine the advantages of CNN to extract local features of text and bidirectional GRU to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the IMDB dataset and Yelp 2015 dataset show that the proposed model can extract more rich text features than other baseline models, and can achieve better results than other baseline models.</description><subject>Artificial neural networks</subject><subject>attention mechanism</subject><subject>bidirectional gated recurrent unit network</subject><subject>Context modeling</subject><subject>Convolutional neural network</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>Semantics</subject><subject>Sentiment analysis</subject><subject>Task analysis</subject><subject>text sentiment orientation analysis</subject><subject>Words (language)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1L5TAQhsviwor6C7wJ7HWP-Wia9PJY_AI_wKPsZZgm0zWHnlaTHNB_v-lWxLmYCS_zvEN4i-KU0RVjtDlbt-3FZrPilNOVoFRqLn4Uh5zVTSmkqA--vX8VJzFuaS6dJakOi90TvieywTH5XW7kIfg8IPlpJOsRho_oIzmHiI5k5W4_JF-2LzCOOJD2_p7A6Mi5dz6gnRkYyNXjM_nj0wtZpzTbzhjajPi4Oy5-9jBEPPmcR8Xz5cVTe13ePlzdtOvb0lZUp1LrhjZVJ2wHigPjVtaIuqfMga26DmpLJdrOiq6SUqlaIAWNlveIlHWA4qi4WXzdBFvzGvwOwoeZwJv_whT-GgjJ2wGNAlVLa212kpWr-0a7LDGmoHfUUZW9fi9er2F622NMZjvtQ_5pNLySVV0xKUTeEsuWDVOMAfuvq4yaOSazxGTmmMxnTJk6XSiPiF9Ew7jSjRD_AFqgjt4</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cheng, Yan</creator><creator>Yao, Leibo</creator><creator>Xiang, Guoxiong</creator><creator>Zhang, Guanghe</creator><creator>Tang, Tianwei</creator><creator>Zhong, Linhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9094-5379</orcidid><orcidid>https://orcid.org/0000-0002-7849-8270</orcidid><orcidid>https://orcid.org/0000-0002-0160-7213</orcidid></search><sort><creationdate>2020</creationdate><title>Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism</title><author>Cheng, Yan ; Yao, Leibo ; Xiang, Guoxiong ; Zhang, Guanghe ; Tang, Tianwei ; Zhong, Linhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-889094b3cba72a12c56ee8f01dac4bba6c05ecbc3b4557763e0a8ec2fee01bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>attention mechanism</topic><topic>bidirectional gated recurrent unit network</topic><topic>Context modeling</topic><topic>Convolutional neural network</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>Semantics</topic><topic>Sentiment analysis</topic><topic>Task analysis</topic><topic>text sentiment orientation analysis</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yan</creatorcontrib><creatorcontrib>Yao, Leibo</creatorcontrib><creatorcontrib>Xiang, Guoxiong</creatorcontrib><creatorcontrib>Zhang, Guanghe</creatorcontrib><creatorcontrib>Tang, Tianwei</creatorcontrib><creatorcontrib>Zhong, Linhui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yan</au><au>Yao, Leibo</au><au>Xiang, Guoxiong</au><au>Zhang, Guanghe</au><au>Tang, Tianwei</au><au>Zhong, Linhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>134964</spage><epage>134975</epage><pages>134964-134975</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a sentence, it ignores the contextual semantic information between words. Bidirectional GRU can make up for the shortcomings that CNN can't extract contextual semantic information of long text, but it can't extract the local features of the text as well as CNN. Therefore, we propose a multi-channel model that combines the CNN and the bidirectional gated recurrent unit network with attention mechanism (MC-AttCNN-AttBiGRU). The model can pay attention to the words that are important to the sentiment polarity classification in the sentence through the attention mechanism and combine the advantages of CNN to extract local features of text and bidirectional GRU to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the IMDB dataset and Yelp 2015 dataset show that the proposed model can extract more rich text features than other baseline models, and can achieve better results than other baseline models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3005823</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9094-5379</orcidid><orcidid>https://orcid.org/0000-0002-7849-8270</orcidid><orcidid>https://orcid.org/0000-0002-0160-7213</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.134964-134975 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3005823 |
source | DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Artificial neural networks attention mechanism bidirectional gated recurrent unit network Context modeling Convolutional neural network Data mining Datasets Feature extraction Machine learning Neural networks Recurrent neural networks Semantics Sentiment analysis Task analysis text sentiment orientation analysis Words (language) |
title | Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Text%20Sentiment%20Orientation%20Analysis%20Based%20on%20Multi-Channel%20CNN%20and%20Bidirectional%20GRU%20With%20Attention%20Mechanism&rft.jtitle=IEEE%20access&rft.au=Cheng,%20Yan&rft.date=2020&rft.volume=8&rft.spage=134964&rft.epage=134975&rft.pages=134964-134975&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3005823&rft_dat=%3Cproquest_cross%3E2454641533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454641533&rft_id=info:pmid/&rft_ieee_id=9127893&rft_doaj_id=oai_doaj_org_article_7a765ccc45554d6f98d7a7117afd0d07&rfr_iscdi=true |