Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism

Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.134964-134975
Hauptverfasser: Cheng, Yan, Yao, Leibo, Xiang, Guoxiong, Zhang, Guanghe, Tang, Tianwei, Zhong, Linhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134975
container_issue
container_start_page 134964
container_title IEEE access
container_volume 8
creator Cheng, Yan
Yao, Leibo
Xiang, Guoxiong
Zhang, Guanghe
Tang, Tianwei
Zhong, Linhui
description Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a sentence, it ignores the contextual semantic information between words. Bidirectional GRU can make up for the shortcomings that CNN can't extract contextual semantic information of long text, but it can't extract the local features of the text as well as CNN. Therefore, we propose a multi-channel model that combines the CNN and the bidirectional gated recurrent unit network with attention mechanism (MC-AttCNN-AttBiGRU). The model can pay attention to the words that are important to the sentiment polarity classification in the sentence through the attention mechanism and combine the advantages of CNN to extract local features of text and bidirectional GRU to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the IMDB dataset and Yelp 2015 dataset show that the proposed model can extract more rich text features than other baseline models, and can achieve better results than other baseline models.
doi_str_mv 10.1109/ACCESS.2020.3005823
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3005823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9127893</ieee_id><doaj_id>oai_doaj_org_article_7a765ccc45554d6f98d7a7117afd0d07</doaj_id><sourcerecordid>2454641533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-889094b3cba72a12c56ee8f01dac4bba6c05ecbc3b4557763e0a8ec2fee01bae3</originalsourceid><addsrcrecordid>eNpNkV1L5TAQhsviwor6C7wJ7HWP-Wia9PJY_AI_wKPsZZgm0zWHnlaTHNB_v-lWxLmYCS_zvEN4i-KU0RVjtDlbt-3FZrPilNOVoFRqLn4Uh5zVTSmkqA--vX8VJzFuaS6dJakOi90TvieywTH5XW7kIfg8IPlpJOsRho_oIzmHiI5k5W4_JF-2LzCOOJD2_p7A6Mi5dz6gnRkYyNXjM_nj0wtZpzTbzhjajPi4Oy5-9jBEPPmcR8Xz5cVTe13ePlzdtOvb0lZUp1LrhjZVJ2wHigPjVtaIuqfMga26DmpLJdrOiq6SUqlaIAWNlveIlHWA4qi4WXzdBFvzGvwOwoeZwJv_whT-GgjJ2wGNAlVLa212kpWr-0a7LDGmoHfUUZW9fi9er2F622NMZjvtQ_5pNLySVV0xKUTeEsuWDVOMAfuvq4yaOSazxGTmmMxnTJk6XSiPiF9Ew7jSjRD_AFqgjt4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454641533</pqid></control><display><type>article</type><title>Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Cheng, Yan ; Yao, Leibo ; Xiang, Guoxiong ; Zhang, Guanghe ; Tang, Tianwei ; Zhong, Linhui</creator><creatorcontrib>Cheng, Yan ; Yao, Leibo ; Xiang, Guoxiong ; Zhang, Guanghe ; Tang, Tianwei ; Zhong, Linhui</creatorcontrib><description>Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a sentence, it ignores the contextual semantic information between words. Bidirectional GRU can make up for the shortcomings that CNN can't extract contextual semantic information of long text, but it can't extract the local features of the text as well as CNN. Therefore, we propose a multi-channel model that combines the CNN and the bidirectional gated recurrent unit network with attention mechanism (MC-AttCNN-AttBiGRU). The model can pay attention to the words that are important to the sentiment polarity classification in the sentence through the attention mechanism and combine the advantages of CNN to extract local features of text and bidirectional GRU to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the IMDB dataset and Yelp 2015 dataset show that the proposed model can extract more rich text features than other baseline models, and can achieve better results than other baseline models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3005823</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; attention mechanism ; bidirectional gated recurrent unit network ; Context modeling ; Convolutional neural network ; Data mining ; Datasets ; Feature extraction ; Machine learning ; Neural networks ; Recurrent neural networks ; Semantics ; Sentiment analysis ; Task analysis ; text sentiment orientation analysis ; Words (language)</subject><ispartof>IEEE access, 2020, Vol.8, p.134964-134975</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-889094b3cba72a12c56ee8f01dac4bba6c05ecbc3b4557763e0a8ec2fee01bae3</citedby><cites>FETCH-LOGICAL-c408t-889094b3cba72a12c56ee8f01dac4bba6c05ecbc3b4557763e0a8ec2fee01bae3</cites><orcidid>0000-0002-9094-5379 ; 0000-0002-7849-8270 ; 0000-0002-0160-7213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9127893$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Cheng, Yan</creatorcontrib><creatorcontrib>Yao, Leibo</creatorcontrib><creatorcontrib>Xiang, Guoxiong</creatorcontrib><creatorcontrib>Zhang, Guanghe</creatorcontrib><creatorcontrib>Tang, Tianwei</creatorcontrib><creatorcontrib>Zhong, Linhui</creatorcontrib><title>Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism</title><title>IEEE access</title><addtitle>Access</addtitle><description>Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a sentence, it ignores the contextual semantic information between words. Bidirectional GRU can make up for the shortcomings that CNN can't extract contextual semantic information of long text, but it can't extract the local features of the text as well as CNN. Therefore, we propose a multi-channel model that combines the CNN and the bidirectional gated recurrent unit network with attention mechanism (MC-AttCNN-AttBiGRU). The model can pay attention to the words that are important to the sentiment polarity classification in the sentence through the attention mechanism and combine the advantages of CNN to extract local features of text and bidirectional GRU to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the IMDB dataset and Yelp 2015 dataset show that the proposed model can extract more rich text features than other baseline models, and can achieve better results than other baseline models.</description><subject>Artificial neural networks</subject><subject>attention mechanism</subject><subject>bidirectional gated recurrent unit network</subject><subject>Context modeling</subject><subject>Convolutional neural network</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>Semantics</subject><subject>Sentiment analysis</subject><subject>Task analysis</subject><subject>text sentiment orientation analysis</subject><subject>Words (language)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1L5TAQhsviwor6C7wJ7HWP-Wia9PJY_AI_wKPsZZgm0zWHnlaTHNB_v-lWxLmYCS_zvEN4i-KU0RVjtDlbt-3FZrPilNOVoFRqLn4Uh5zVTSmkqA--vX8VJzFuaS6dJakOi90TvieywTH5XW7kIfg8IPlpJOsRho_oIzmHiI5k5W4_JF-2LzCOOJD2_p7A6Mi5dz6gnRkYyNXjM_nj0wtZpzTbzhjajPi4Oy5-9jBEPPmcR8Xz5cVTe13ePlzdtOvb0lZUp1LrhjZVJ2wHigPjVtaIuqfMga26DmpLJdrOiq6SUqlaIAWNlveIlHWA4qi4WXzdBFvzGvwOwoeZwJv_whT-GgjJ2wGNAlVLa212kpWr-0a7LDGmoHfUUZW9fi9er2F622NMZjvtQ_5pNLySVV0xKUTeEsuWDVOMAfuvq4yaOSazxGTmmMxnTJk6XSiPiF9Ew7jSjRD_AFqgjt4</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cheng, Yan</creator><creator>Yao, Leibo</creator><creator>Xiang, Guoxiong</creator><creator>Zhang, Guanghe</creator><creator>Tang, Tianwei</creator><creator>Zhong, Linhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9094-5379</orcidid><orcidid>https://orcid.org/0000-0002-7849-8270</orcidid><orcidid>https://orcid.org/0000-0002-0160-7213</orcidid></search><sort><creationdate>2020</creationdate><title>Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism</title><author>Cheng, Yan ; Yao, Leibo ; Xiang, Guoxiong ; Zhang, Guanghe ; Tang, Tianwei ; Zhong, Linhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-889094b3cba72a12c56ee8f01dac4bba6c05ecbc3b4557763e0a8ec2fee01bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>attention mechanism</topic><topic>bidirectional gated recurrent unit network</topic><topic>Context modeling</topic><topic>Convolutional neural network</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>Semantics</topic><topic>Sentiment analysis</topic><topic>Task analysis</topic><topic>text sentiment orientation analysis</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yan</creatorcontrib><creatorcontrib>Yao, Leibo</creatorcontrib><creatorcontrib>Xiang, Guoxiong</creatorcontrib><creatorcontrib>Zhang, Guanghe</creatorcontrib><creatorcontrib>Tang, Tianwei</creatorcontrib><creatorcontrib>Zhong, Linhui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yan</au><au>Yao, Leibo</au><au>Xiang, Guoxiong</au><au>Zhang, Guanghe</au><au>Tang, Tianwei</au><au>Zhong, Linhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>134964</spage><epage>134975</epage><pages>134964-134975</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) have been widely used in the field of text sentiment analysis and have achieved good results. However, there is an anteroposterior dependency between texts, although CNN can extract local information between consecutive words of a sentence, it ignores the contextual semantic information between words. Bidirectional GRU can make up for the shortcomings that CNN can't extract contextual semantic information of long text, but it can't extract the local features of the text as well as CNN. Therefore, we propose a multi-channel model that combines the CNN and the bidirectional gated recurrent unit network with attention mechanism (MC-AttCNN-AttBiGRU). The model can pay attention to the words that are important to the sentiment polarity classification in the sentence through the attention mechanism and combine the advantages of CNN to extract local features of text and bidirectional GRU to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the IMDB dataset and Yelp 2015 dataset show that the proposed model can extract more rich text features than other baseline models, and can achieve better results than other baseline models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3005823</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9094-5379</orcidid><orcidid>https://orcid.org/0000-0002-7849-8270</orcidid><orcidid>https://orcid.org/0000-0002-0160-7213</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.134964-134975
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3005823
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Artificial neural networks
attention mechanism
bidirectional gated recurrent unit network
Context modeling
Convolutional neural network
Data mining
Datasets
Feature extraction
Machine learning
Neural networks
Recurrent neural networks
Semantics
Sentiment analysis
Task analysis
text sentiment orientation analysis
Words (language)
title Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Text%20Sentiment%20Orientation%20Analysis%20Based%20on%20Multi-Channel%20CNN%20and%20Bidirectional%20GRU%20With%20Attention%20Mechanism&rft.jtitle=IEEE%20access&rft.au=Cheng,%20Yan&rft.date=2020&rft.volume=8&rft.spage=134964&rft.epage=134975&rft.pages=134964-134975&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3005823&rft_dat=%3Cproquest_cross%3E2454641533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454641533&rft_id=info:pmid/&rft_ieee_id=9127893&rft_doaj_id=oai_doaj_org_article_7a765ccc45554d6f98d7a7117afd0d07&rfr_iscdi=true