NAND Flash Based Novel Synaptic Architecture for Highly Robust and High-Density Quantized Neural Networks With Binary Neuron Activation of (1, 0)

We propose a novel synaptic architecture based on a NAND flash memory for highly robust and high-density quantized neural networks (QNN) with 4-bit weight and binary neuron activation, for the first time. The proposed synaptic architecture is fully compatible with the conventional NAND flash memory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.114330-114339
Hauptverfasser: Lee, Sung-Tae, Kwon, Dongseok, Kim, Hyeongsu, Yoo, Honam, Lee, Jong-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114339
container_issue
container_start_page 114330
container_title IEEE access
container_volume 8
creator Lee, Sung-Tae
Kwon, Dongseok
Kim, Hyeongsu
Yoo, Honam
Lee, Jong-Ho
description We propose a novel synaptic architecture based on a NAND flash memory for highly robust and high-density quantized neural networks (QNN) with 4-bit weight and binary neuron activation, for the first time. The proposed synaptic architecture is fully compatible with the conventional NAND flash memory architecture by adopting a differential sensing scheme and a binary neuron activation of (1, 0). A binary neuron enables using a 1-bit sense amplifier, which significantly reduces the burden of peripheral circuits and power consumption and enables bitwise communication between the layers of neural networks. Operating NAND cells in the saturation region eliminates the effect of metal wire resistance and serial resistance of the NAND cells. With a read-verify-write (RVW) scheme, low-variance conductance distribution is demonstrated for 8 levels. Vector-matrix multiplication (VMM) of a 4-bit weight and binary activation can be accomplished by only one input pulse, eliminating the need of a multiplier and an additional logic operation. In addition, quantization training can minimize the degradation of the inference accuracy compared to post-training quantization. Finally, the low-variance conductance distribution of the NAND cells achieves a higher inference accuracy compared to that of resistive random access memory (RRAM) devices by 2~7 % and 0.04~0.23 % for CIFAR 10 and MNIST datasets, respectively.
doi_str_mv 10.1109/ACCESS.2020.3004045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3004045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9121948</ieee_id><doaj_id>oai_doaj_org_article_8a12d3427ff5409b817bb10de4eab4b1</doaj_id><sourcerecordid>2454616882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9286a7b0499f90061d97b0858149ba81355fc978b97bd28be1c7d4b7955efce23</originalsourceid><addsrcrecordid>eNpNUcFu1DAUjBBIVKVf0IslLiCRxXbsxD6GbUsrVYtgQRwtO3nuegnxYjtF27_oH-PdVBW-vPfGnpknT1GcE7wgBMuP7XJ5uV4vKKZ4UWHMMOMvihNKallWvKpf_te_Ls5i3OJ8RIZ4c1I8rtrVBboadNygTzpCj1b-Hga03o96l1yH2tBtXIIuTQGQ9QFdu7vNsEffvJliQnrsj0h5AWN0aY--TnpM7uEgBFPQQy7prw-_IvrpUvZwow77450fUdsld6-Ty6236B35gPD7N8Urq4cIZ0_1tPhxdfl9eV3efvl8s2xvy45hkUpJRa0bg5mUVmJck17mSXBBmDRakIpz28lGmAz3VBggXdMz00jOwXZAq9PiZtbtvd6qXXC_82LKa6eOgA93Sof8AwMooQntK0YbaznD0gjSGENwDwy0YYZkrbez1i74PxPEpLZ-CmNeX1HGWU1qIQ6O1fyqCz7GAPbZlWB1iFLNUapDlOopysw6n1kOAJ4ZklAimaj-AfMimRs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454616882</pqid></control><display><type>article</type><title>NAND Flash Based Novel Synaptic Architecture for Highly Robust and High-Density Quantized Neural Networks With Binary Neuron Activation of (1, 0)</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lee, Sung-Tae ; Kwon, Dongseok ; Kim, Hyeongsu ; Yoo, Honam ; Lee, Jong-Ho</creator><creatorcontrib>Lee, Sung-Tae ; Kwon, Dongseok ; Kim, Hyeongsu ; Yoo, Honam ; Lee, Jong-Ho</creatorcontrib><description>We propose a novel synaptic architecture based on a NAND flash memory for highly robust and high-density quantized neural networks (QNN) with 4-bit weight and binary neuron activation, for the first time. The proposed synaptic architecture is fully compatible with the conventional NAND flash memory architecture by adopting a differential sensing scheme and a binary neuron activation of (1, 0). A binary neuron enables using a 1-bit sense amplifier, which significantly reduces the burden of peripheral circuits and power consumption and enables bitwise communication between the layers of neural networks. Operating NAND cells in the saturation region eliminates the effect of metal wire resistance and serial resistance of the NAND cells. With a read-verify-write (RVW) scheme, low-variance conductance distribution is demonstrated for 8 levels. Vector-matrix multiplication (VMM) of a 4-bit weight and binary activation can be accomplished by only one input pulse, eliminating the need of a multiplier and an additional logic operation. In addition, quantization training can minimize the degradation of the inference accuracy compared to post-training quantization. Finally, the low-variance conductance distribution of the NAND cells achieves a higher inference accuracy compared to that of resistive random access memory (RRAM) devices by 2~7 % and 0.04~0.23 % for CIFAR 10 and MNIST datasets, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3004045</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological neural networks ; Computer architecture ; deep neural network ; Density ; Flash memories ; Flash memory (computers) ; hardware neural network ; in-memory computing ; Inference ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Measurement ; Memory devices ; Multiplication ; NAND flash ; Neural networks ; neuromorphic ; Neuromorphics ; Neurons ; Power consumption ; quantized neural networks ; Random access memory ; Resistance ; Robustness ; Sense amplifiers ; Synapses ; synaptic device ; Training ; Variance ; Virtual machine monitors ; Weight</subject><ispartof>IEEE access, 2020, Vol.8, p.114330-114339</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9286a7b0499f90061d97b0858149ba81355fc978b97bd28be1c7d4b7955efce23</citedby><cites>FETCH-LOGICAL-c408t-9286a7b0499f90061d97b0858149ba81355fc978b97bd28be1c7d4b7955efce23</cites><orcidid>0000-0003-3559-9802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9121948$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Lee, Sung-Tae</creatorcontrib><creatorcontrib>Kwon, Dongseok</creatorcontrib><creatorcontrib>Kim, Hyeongsu</creatorcontrib><creatorcontrib>Yoo, Honam</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><title>NAND Flash Based Novel Synaptic Architecture for Highly Robust and High-Density Quantized Neural Networks With Binary Neuron Activation of (1, 0)</title><title>IEEE access</title><addtitle>Access</addtitle><description>We propose a novel synaptic architecture based on a NAND flash memory for highly robust and high-density quantized neural networks (QNN) with 4-bit weight and binary neuron activation, for the first time. The proposed synaptic architecture is fully compatible with the conventional NAND flash memory architecture by adopting a differential sensing scheme and a binary neuron activation of (1, 0). A binary neuron enables using a 1-bit sense amplifier, which significantly reduces the burden of peripheral circuits and power consumption and enables bitwise communication between the layers of neural networks. Operating NAND cells in the saturation region eliminates the effect of metal wire resistance and serial resistance of the NAND cells. With a read-verify-write (RVW) scheme, low-variance conductance distribution is demonstrated for 8 levels. Vector-matrix multiplication (VMM) of a 4-bit weight and binary activation can be accomplished by only one input pulse, eliminating the need of a multiplier and an additional logic operation. In addition, quantization training can minimize the degradation of the inference accuracy compared to post-training quantization. Finally, the low-variance conductance distribution of the NAND cells achieves a higher inference accuracy compared to that of resistive random access memory (RRAM) devices by 2~7 % and 0.04~0.23 % for CIFAR 10 and MNIST datasets, respectively.</description><subject>Biological neural networks</subject><subject>Computer architecture</subject><subject>deep neural network</subject><subject>Density</subject><subject>Flash memories</subject><subject>Flash memory (computers)</subject><subject>hardware neural network</subject><subject>in-memory computing</subject><subject>Inference</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Measurement</subject><subject>Memory devices</subject><subject>Multiplication</subject><subject>NAND flash</subject><subject>Neural networks</subject><subject>neuromorphic</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Power consumption</subject><subject>quantized neural networks</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>Robustness</subject><subject>Sense amplifiers</subject><subject>Synapses</subject><subject>synaptic device</subject><subject>Training</subject><subject>Variance</subject><subject>Virtual machine monitors</subject><subject>Weight</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu1DAUjBBIVKVf0IslLiCRxXbsxD6GbUsrVYtgQRwtO3nuegnxYjtF27_oH-PdVBW-vPfGnpknT1GcE7wgBMuP7XJ5uV4vKKZ4UWHMMOMvihNKallWvKpf_te_Ls5i3OJ8RIZ4c1I8rtrVBboadNygTzpCj1b-Hga03o96l1yH2tBtXIIuTQGQ9QFdu7vNsEffvJliQnrsj0h5AWN0aY--TnpM7uEgBFPQQy7prw-_IvrpUvZwow77450fUdsld6-Ty6236B35gPD7N8Urq4cIZ0_1tPhxdfl9eV3efvl8s2xvy45hkUpJRa0bg5mUVmJck17mSXBBmDRakIpz28lGmAz3VBggXdMz00jOwXZAq9PiZtbtvd6qXXC_82LKa6eOgA93Sof8AwMooQntK0YbaznD0gjSGENwDwy0YYZkrbez1i74PxPEpLZ-CmNeX1HGWU1qIQ6O1fyqCz7GAPbZlWB1iFLNUapDlOopysw6n1kOAJ4ZklAimaj-AfMimRs</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lee, Sung-Tae</creator><creator>Kwon, Dongseok</creator><creator>Kim, Hyeongsu</creator><creator>Yoo, Honam</creator><creator>Lee, Jong-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid></search><sort><creationdate>2020</creationdate><title>NAND Flash Based Novel Synaptic Architecture for Highly Robust and High-Density Quantized Neural Networks With Binary Neuron Activation of (1, 0)</title><author>Lee, Sung-Tae ; Kwon, Dongseok ; Kim, Hyeongsu ; Yoo, Honam ; Lee, Jong-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9286a7b0499f90061d97b0858149ba81355fc978b97bd28be1c7d4b7955efce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological neural networks</topic><topic>Computer architecture</topic><topic>deep neural network</topic><topic>Density</topic><topic>Flash memories</topic><topic>Flash memory (computers)</topic><topic>hardware neural network</topic><topic>in-memory computing</topic><topic>Inference</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Measurement</topic><topic>Memory devices</topic><topic>Multiplication</topic><topic>NAND flash</topic><topic>Neural networks</topic><topic>neuromorphic</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Power consumption</topic><topic>quantized neural networks</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>Robustness</topic><topic>Sense amplifiers</topic><topic>Synapses</topic><topic>synaptic device</topic><topic>Training</topic><topic>Variance</topic><topic>Virtual machine monitors</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sung-Tae</creatorcontrib><creatorcontrib>Kwon, Dongseok</creatorcontrib><creatorcontrib>Kim, Hyeongsu</creatorcontrib><creatorcontrib>Yoo, Honam</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sung-Tae</au><au>Kwon, Dongseok</au><au>Kim, Hyeongsu</au><au>Yoo, Honam</au><au>Lee, Jong-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NAND Flash Based Novel Synaptic Architecture for Highly Robust and High-Density Quantized Neural Networks With Binary Neuron Activation of (1, 0)</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>114330</spage><epage>114339</epage><pages>114330-114339</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We propose a novel synaptic architecture based on a NAND flash memory for highly robust and high-density quantized neural networks (QNN) with 4-bit weight and binary neuron activation, for the first time. The proposed synaptic architecture is fully compatible with the conventional NAND flash memory architecture by adopting a differential sensing scheme and a binary neuron activation of (1, 0). A binary neuron enables using a 1-bit sense amplifier, which significantly reduces the burden of peripheral circuits and power consumption and enables bitwise communication between the layers of neural networks. Operating NAND cells in the saturation region eliminates the effect of metal wire resistance and serial resistance of the NAND cells. With a read-verify-write (RVW) scheme, low-variance conductance distribution is demonstrated for 8 levels. Vector-matrix multiplication (VMM) of a 4-bit weight and binary activation can be accomplished by only one input pulse, eliminating the need of a multiplier and an additional logic operation. In addition, quantization training can minimize the degradation of the inference accuracy compared to post-training quantization. Finally, the low-variance conductance distribution of the NAND cells achieves a higher inference accuracy compared to that of resistive random access memory (RRAM) devices by 2~7 % and 0.04~0.23 % for CIFAR 10 and MNIST datasets, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3004045</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.114330-114339
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3004045
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biological neural networks
Computer architecture
deep neural network
Density
Flash memories
Flash memory (computers)
hardware neural network
in-memory computing
Inference
Mathematical analysis
Matrix algebra
Matrix methods
Measurement
Memory devices
Multiplication
NAND flash
Neural networks
neuromorphic
Neuromorphics
Neurons
Power consumption
quantized neural networks
Random access memory
Resistance
Robustness
Sense amplifiers
Synapses
synaptic device
Training
Variance
Virtual machine monitors
Weight
title NAND Flash Based Novel Synaptic Architecture for Highly Robust and High-Density Quantized Neural Networks With Binary Neuron Activation of (1, 0)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NAND%20Flash%20Based%20Novel%20Synaptic%20Architecture%20for%20Highly%20Robust%20and%20High-Density%20Quantized%20Neural%20Networks%20With%20Binary%20Neuron%20Activation%20of%20(1,%200)&rft.jtitle=IEEE%20access&rft.au=Lee,%20Sung-Tae&rft.date=2020&rft.volume=8&rft.spage=114330&rft.epage=114339&rft.pages=114330-114339&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3004045&rft_dat=%3Cproquest_cross%3E2454616882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454616882&rft_id=info:pmid/&rft_ieee_id=9121948&rft_doaj_id=oai_doaj_org_article_8a12d3427ff5409b817bb10de4eab4b1&rfr_iscdi=true