Small Frequency Ratio Multi-Band Dielectric Resonator Antenna Utilizing Vertical Metallic Strip Pairs Feeding Structure

In this study a quintuple band rectangular dielectric resonator antenna (RDRA) with a small frequency ratio and small size of 30 mm \times30 mm \times9.813 mm is introduced. The proposed RDRA covers the frequency bands of WLAN (2.4/5.2 GHz), WiMAX (3.5 GHz) and 5G (4.1/4.8 GHz) exploiting TE^{y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.112840-112845
Hauptverfasser: Afifi, Asmaa I., Abdel-Rahman, Adel B., El-Hameed, Anwer S. Abd, Allam, Ahmed, Ahmed, Sabah M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112845
container_issue
container_start_page 112840
container_title IEEE access
container_volume 8
creator Afifi, Asmaa I.
Abdel-Rahman, Adel B.
El-Hameed, Anwer S. Abd
Allam, Ahmed
Ahmed, Sabah M.
description In this study a quintuple band rectangular dielectric resonator antenna (RDRA) with a small frequency ratio and small size of 30 mm \times30 mm \times9.813 mm is introduced. The proposed RDRA covers the frequency bands of WLAN (2.4/5.2 GHz), WiMAX (3.5 GHz) and 5G (4.1/4.8 GHz) exploiting TE^{y}_{10} , TE^{x}_{211} , TE^{y}_{1\delta 1} , TE^{y}_{111} , and TE^{y}_{2\delta 1} modes, respectively. A rectangular slot aperture is optimized to serve as a resonator with resonance mode TE^{y}_{10} as well as to couple the electric field from microstrip line to the DRA to excite TE^{x}_{211} mode. Furthermore, a new feeding approach employing three vertical metallic strip pairs (VMSPs) is proposed to excite further TE^{y}_{1\delta 1} , TE^{y}_{111} , and TE^{y}_{2\delta 1} modes in the RDRA. The VMSPs are configured on both sides of the dielectric resonator (DR) along the y - direction to act as vertical electric current sources. The lengths, width, and positions of the VMSPs are carefully determined in order to attain the desired modes. The four RDRA modes have broadside patterns while the slot resonator mode has a pattern like a dipole. Good agreement between both measured and simulated results of the reflection coefficient, radiation pattern, and the gain is achieved.
doi_str_mv 10.1109/ACCESS.2020.3002789
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3002789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9118874</ieee_id><doaj_id>oai_doaj_org_article_cb0c15324ea0406cbae8e29255f48ad8</doaj_id><sourcerecordid>2454619274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e4b2e95ee947e99dd30aa2cd04b89be57b3065db6bf8aacee6ef4c40ab567b8d3</originalsourceid><addsrcrecordid>eNpNkVFrHCEUhYfSQkOaX5AXIc-zVUdn9HGzzbaBhJZskle56p3gMhm3jkNIf33dTgj1RTmc892Lp6rOGV0xRvXX9WZztdutOOV01VDKO6U_VCectbpuZNN-_O_9uTqbpj0tRxVJdifVy-4ZhoFsE_6ecXSv5A5yiOR2HnKoL2H05FvAAV1OwZE7nOIIOSayHjOOI5CHHIbwJ4xP5BFTDg4Gcou5EIt7VzIH8gtCmsgW0R9dRZtdnhN-qT71MEx49nafVg_bq_vNj_rm5_frzfqmdoKqXKOwHLVE1KJDrb1vKAB3ngqrtEXZ2Ya20tvW9grAIbbYixIFK9vOKt-cVtcL10fYm0MKz5BeTYRg_gkxPRk4Lj6gcZY6JhsuEKigrbOACrnmUvZCgVeFdbGwDimW35qy2cc5jWV9w4UULdO8E8XVLC6X4jQl7N-nMmqOhZmlMHMszLwVVlLnSyog4ntCM6ZUYf4Fg2OT-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454619274</pqid></control><display><type>article</type><title>Small Frequency Ratio Multi-Band Dielectric Resonator Antenna Utilizing Vertical Metallic Strip Pairs Feeding Structure</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Afifi, Asmaa I. ; Abdel-Rahman, Adel B. ; El-Hameed, Anwer S. Abd ; Allam, Ahmed ; Ahmed, Sabah M.</creator><creatorcontrib>Afifi, Asmaa I. ; Abdel-Rahman, Adel B. ; El-Hameed, Anwer S. Abd ; Allam, Ahmed ; Ahmed, Sabah M.</creatorcontrib><description><![CDATA[In this study a quintuple band rectangular dielectric resonator antenna (RDRA) with a small frequency ratio and small size of 30 mm <inline-formula> <tex-math notation="LaTeX">\times30 </tex-math></inline-formula> mm <inline-formula> <tex-math notation="LaTeX">\times9.813 </tex-math></inline-formula> mm is introduced. The proposed RDRA covers the frequency bands of WLAN (2.4/5.2 GHz), WiMAX (3.5 GHz) and 5G (4.1/4.8 GHz) exploiting <inline-formula> <tex-math notation="LaTeX">TE^{y}_{10} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">TE^{x}_{211} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">TE^{y}_{1\delta 1} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">TE^{y}_{111} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">TE^{y}_{2\delta 1} </tex-math></inline-formula> modes, respectively. A rectangular slot aperture is optimized to serve as a resonator with resonance mode <inline-formula> <tex-math notation="LaTeX">TE^{y}_{10} </tex-math></inline-formula> as well as to couple the electric field from microstrip line to the DRA to excite <inline-formula> <tex-math notation="LaTeX">TE^{x}_{211} </tex-math></inline-formula> mode. Furthermore, a new feeding approach employing three vertical metallic strip pairs (VMSPs) is proposed to excite further <inline-formula> <tex-math notation="LaTeX">TE^{y}_{1\delta 1} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">TE^{y}_{111} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">TE^{y}_{2\delta 1} </tex-math></inline-formula> modes in the RDRA. The VMSPs are configured on both sides of the dielectric resonator (DR) along the <inline-formula> <tex-math notation="LaTeX">y </tex-math></inline-formula> - direction to act as vertical electric current sources. The lengths, width, and positions of the VMSPs are carefully determined in order to attain the desired modes. The four RDRA modes have broadside patterns while the slot resonator mode has a pattern like a dipole. Good agreement between both measured and simulated results of the reflection coefficient, radiation pattern, and the gain is achieved.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3002789</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; Aperture ; Apertures ; Current sources ; Dielectric resonator antennas ; Dielectrics ; Dipoles ; Electric fields ; Frequencies ; Local area networks ; Microstrip transmission lines ; modes ; Permittivity ; Radio antennas ; RDRA ; Reflectance ; Reflection coefficient ; Resonators ; VMSPs ; WiMAX ; Wireless communication ; wireless communications ; Wireless networks ; WLAN</subject><ispartof>IEEE access, 2020, Vol.8, p.112840-112845</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e4b2e95ee947e99dd30aa2cd04b89be57b3065db6bf8aacee6ef4c40ab567b8d3</citedby><cites>FETCH-LOGICAL-c408t-e4b2e95ee947e99dd30aa2cd04b89be57b3065db6bf8aacee6ef4c40ab567b8d3</cites><orcidid>0000-0002-6989-9478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9118874$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Afifi, Asmaa I.</creatorcontrib><creatorcontrib>Abdel-Rahman, Adel B.</creatorcontrib><creatorcontrib>El-Hameed, Anwer S. Abd</creatorcontrib><creatorcontrib>Allam, Ahmed</creatorcontrib><creatorcontrib>Ahmed, Sabah M.</creatorcontrib><title>Small Frequency Ratio Multi-Band Dielectric Resonator Antenna Utilizing Vertical Metallic Strip Pairs Feeding Structure</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[In this study a quintuple band rectangular dielectric resonator antenna (RDRA) with a small frequency ratio and small size of 30 mm <inline-formula> <tex-math notation="LaTeX">\times30 </tex-math></inline-formula> mm <inline-formula> <tex-math notation="LaTeX">\times9.813 </tex-math></inline-formula> mm is introduced. The proposed RDRA covers the frequency bands of WLAN (2.4/5.2 GHz), WiMAX (3.5 GHz) and 5G (4.1/4.8 GHz) exploiting <inline-formula> <tex-math notation="LaTeX">TE^{y}_{10} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">TE^{x}_{211} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">TE^{y}_{1\delta 1} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">TE^{y}_{111} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">TE^{y}_{2\delta 1} </tex-math></inline-formula> modes, respectively. A rectangular slot aperture is optimized to serve as a resonator with resonance mode <inline-formula> <tex-math notation="LaTeX">TE^{y}_{10} </tex-math></inline-formula> as well as to couple the electric field from microstrip line to the DRA to excite <inline-formula> <tex-math notation="LaTeX">TE^{x}_{211} </tex-math></inline-formula> mode. Furthermore, a new feeding approach employing three vertical metallic strip pairs (VMSPs) is proposed to excite further <inline-formula> <tex-math notation="LaTeX">TE^{y}_{1\delta 1} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">TE^{y}_{111} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">TE^{y}_{2\delta 1} </tex-math></inline-formula> modes in the RDRA. The VMSPs are configured on both sides of the dielectric resonator (DR) along the <inline-formula> <tex-math notation="LaTeX">y </tex-math></inline-formula> - direction to act as vertical electric current sources. The lengths, width, and positions of the VMSPs are carefully determined in order to attain the desired modes. The four RDRA modes have broadside patterns while the slot resonator mode has a pattern like a dipole. Good agreement between both measured and simulated results of the reflection coefficient, radiation pattern, and the gain is achieved.]]></description><subject>5G mobile communication</subject><subject>Aperture</subject><subject>Apertures</subject><subject>Current sources</subject><subject>Dielectric resonator antennas</subject><subject>Dielectrics</subject><subject>Dipoles</subject><subject>Electric fields</subject><subject>Frequencies</subject><subject>Local area networks</subject><subject>Microstrip transmission lines</subject><subject>modes</subject><subject>Permittivity</subject><subject>Radio antennas</subject><subject>RDRA</subject><subject>Reflectance</subject><subject>Reflection coefficient</subject><subject>Resonators</subject><subject>VMSPs</subject><subject>WiMAX</subject><subject>Wireless communication</subject><subject>wireless communications</subject><subject>Wireless networks</subject><subject>WLAN</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFrHCEUhYfSQkOaX5AXIc-zVUdn9HGzzbaBhJZskle56p3gMhm3jkNIf33dTgj1RTmc892Lp6rOGV0xRvXX9WZztdutOOV01VDKO6U_VCectbpuZNN-_O_9uTqbpj0tRxVJdifVy-4ZhoFsE_6ecXSv5A5yiOR2HnKoL2H05FvAAV1OwZE7nOIIOSayHjOOI5CHHIbwJ4xP5BFTDg4Gcou5EIt7VzIH8gtCmsgW0R9dRZtdnhN-qT71MEx49nafVg_bq_vNj_rm5_frzfqmdoKqXKOwHLVE1KJDrb1vKAB3ngqrtEXZ2Ya20tvW9grAIbbYixIFK9vOKt-cVtcL10fYm0MKz5BeTYRg_gkxPRk4Lj6gcZY6JhsuEKigrbOACrnmUvZCgVeFdbGwDimW35qy2cc5jWV9w4UULdO8E8XVLC6X4jQl7N-nMmqOhZmlMHMszLwVVlLnSyog4ntCM6ZUYf4Fg2OT-Q</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Afifi, Asmaa I.</creator><creator>Abdel-Rahman, Adel B.</creator><creator>El-Hameed, Anwer S. Abd</creator><creator>Allam, Ahmed</creator><creator>Ahmed, Sabah M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6989-9478</orcidid></search><sort><creationdate>2020</creationdate><title>Small Frequency Ratio Multi-Band Dielectric Resonator Antenna Utilizing Vertical Metallic Strip Pairs Feeding Structure</title><author>Afifi, Asmaa I. ; Abdel-Rahman, Adel B. ; El-Hameed, Anwer S. Abd ; Allam, Ahmed ; Ahmed, Sabah M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e4b2e95ee947e99dd30aa2cd04b89be57b3065db6bf8aacee6ef4c40ab567b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5G mobile communication</topic><topic>Aperture</topic><topic>Apertures</topic><topic>Current sources</topic><topic>Dielectric resonator antennas</topic><topic>Dielectrics</topic><topic>Dipoles</topic><topic>Electric fields</topic><topic>Frequencies</topic><topic>Local area networks</topic><topic>Microstrip transmission lines</topic><topic>modes</topic><topic>Permittivity</topic><topic>Radio antennas</topic><topic>RDRA</topic><topic>Reflectance</topic><topic>Reflection coefficient</topic><topic>Resonators</topic><topic>VMSPs</topic><topic>WiMAX</topic><topic>Wireless communication</topic><topic>wireless communications</topic><topic>Wireless networks</topic><topic>WLAN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afifi, Asmaa I.</creatorcontrib><creatorcontrib>Abdel-Rahman, Adel B.</creatorcontrib><creatorcontrib>El-Hameed, Anwer S. Abd</creatorcontrib><creatorcontrib>Allam, Ahmed</creatorcontrib><creatorcontrib>Ahmed, Sabah M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afifi, Asmaa I.</au><au>Abdel-Rahman, Adel B.</au><au>El-Hameed, Anwer S. Abd</au><au>Allam, Ahmed</au><au>Ahmed, Sabah M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Frequency Ratio Multi-Band Dielectric Resonator Antenna Utilizing Vertical Metallic Strip Pairs Feeding Structure</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>112840</spage><epage>112845</epage><pages>112840-112845</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[In this study a quintuple band rectangular dielectric resonator antenna (RDRA) with a small frequency ratio and small size of 30 mm <inline-formula> <tex-math notation="LaTeX">\times30 </tex-math></inline-formula> mm <inline-formula> <tex-math notation="LaTeX">\times9.813 </tex-math></inline-formula> mm is introduced. The proposed RDRA covers the frequency bands of WLAN (2.4/5.2 GHz), WiMAX (3.5 GHz) and 5G (4.1/4.8 GHz) exploiting <inline-formula> <tex-math notation="LaTeX">TE^{y}_{10} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">TE^{x}_{211} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">TE^{y}_{1\delta 1} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">TE^{y}_{111} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">TE^{y}_{2\delta 1} </tex-math></inline-formula> modes, respectively. A rectangular slot aperture is optimized to serve as a resonator with resonance mode <inline-formula> <tex-math notation="LaTeX">TE^{y}_{10} </tex-math></inline-formula> as well as to couple the electric field from microstrip line to the DRA to excite <inline-formula> <tex-math notation="LaTeX">TE^{x}_{211} </tex-math></inline-formula> mode. Furthermore, a new feeding approach employing three vertical metallic strip pairs (VMSPs) is proposed to excite further <inline-formula> <tex-math notation="LaTeX">TE^{y}_{1\delta 1} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">TE^{y}_{111} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">TE^{y}_{2\delta 1} </tex-math></inline-formula> modes in the RDRA. The VMSPs are configured on both sides of the dielectric resonator (DR) along the <inline-formula> <tex-math notation="LaTeX">y </tex-math></inline-formula> - direction to act as vertical electric current sources. The lengths, width, and positions of the VMSPs are carefully determined in order to attain the desired modes. The four RDRA modes have broadside patterns while the slot resonator mode has a pattern like a dipole. Good agreement between both measured and simulated results of the reflection coefficient, radiation pattern, and the gain is achieved.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3002789</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6989-9478</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.112840-112845
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3002789
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 5G mobile communication
Aperture
Apertures
Current sources
Dielectric resonator antennas
Dielectrics
Dipoles
Electric fields
Frequencies
Local area networks
Microstrip transmission lines
modes
Permittivity
Radio antennas
RDRA
Reflectance
Reflection coefficient
Resonators
VMSPs
WiMAX
Wireless communication
wireless communications
Wireless networks
WLAN
title Small Frequency Ratio Multi-Band Dielectric Resonator Antenna Utilizing Vertical Metallic Strip Pairs Feeding Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Frequency%20Ratio%20Multi-Band%20Dielectric%20Resonator%20Antenna%20Utilizing%20Vertical%20Metallic%20Strip%20Pairs%20Feeding%20Structure&rft.jtitle=IEEE%20access&rft.au=Afifi,%20Asmaa%20I.&rft.date=2020&rft.volume=8&rft.spage=112840&rft.epage=112845&rft.pages=112840-112845&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3002789&rft_dat=%3Cproquest_cross%3E2454619274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454619274&rft_id=info:pmid/&rft_ieee_id=9118874&rft_doaj_id=oai_doaj_org_article_cb0c15324ea0406cbae8e29255f48ad8&rfr_iscdi=true